Abstract:
An apparatus for increasing the quantity of dissolved oxygen in water. The apparatus includes an inlet for receiving untreated water. A cell housing having an electrolytic cell therein is coupled to the inlet. A resident time housing is connected to the cell housing for receiving water having oxygen and hydrogen gas therein. The resident time housing is vertically oriented and longitudinally extending for a selected vertical length above the cell housing. This provides sufficient resident time of the water in a quiet zone to permit the generated oxygen gas to transition into the dissolved state prior to reaching the top of the resident time housing. An outlet is provided at the top of the resident time housing. Treated water having a high dissolved oxygen content is delivered out of the outlet. A gas vent is provided at the outlet to permit the escape of hydrogen or other gases which have not been dissolved into the water. Preferably, a chill unit is provided prior to the electrolytic cell to reduce the temperature of the water to make it pleasing for human consumption and also to increase the quantity of dissolved oxygen which can enter the water. Additionally, a light or other artistic display may be provided adjacent to or with the resident time housing for the pleasure of viewers.
Abstract:
In a method for producing sodium hypochlorite, brine solution is piped from the brine tank to a first inlet in a first electrolyzer cell of an electrolyzer assembly while simultaneously piping chilled water from a chiller having a temperature range from about 10° C. to about 25° C. to the first inlet so that the brine solution combines with the chilled water. The chilled brine solution is electrolyzed in the first electrolyzer cell. The hypochlorite and brine solution resulting from electrolysis occurring in the first cell is piped to a second inlet in a second electrolyzer cell in the electrolyzer assembly while simultaneously piping chilled water from the chiller having a temperature range from about 10° C. to about 25° C. to the second inlet so that the chilled water combines with the hypochlorite and brine solution. Each cell can have more than one inlet, preferably up to 6 inlets. The chilled hypochlorite and brine solution are electrolyzed in the second cell. The process is repeated until the hypochlorite and brine solution passes through all cells of the electrolyzer assembly.
Abstract:
An object of the present invention is to provide a process and an apparatus for treating a gas containing reducing substances to efficiently degrade and remove the reducing substances. As a means to achieve this object, the present invention provides a process for treating a gas containing reducing substances by hydrothermal electrolysis, comprising supplying a gas containing reducing substances into a reactor charged with an aqueous medium containing a halide ion under application of a direct current at a temperature of 100° C. or more but the critical temperature of said aqueous medium or less and at a pressure that allows said aqueous medium to be kept in the liquid phase.
Abstract:
In a circulation system of treatment-object water (waste water), a water treating apparatus and a pH adjuster are provided. A carbon fiber that can collect at least microorganisms is disposed in the water treating apparatus. The carbon fiber is immersed in the treatment-object water, and potential is applied to the carbon fiber. Further, pH of the treatment-object water is adjusted by the pH adjuster in a direction in which adsorption of microorganisms in the treatment-object water to the carbon fiber is facilitated. As a result, the microorganisms are strongly attracted and adsorbed to the carbon fiber.
Abstract:
The present invention provides for the electrochemical generation of ozone for use in nullpoint-of-usenull applications. The electrochemical ozone generators or systems of the present invention may be used to provide disinfected water, ozone-containing water, and/or ozone gas. Disinfected water may be produced by introducing ozone gas into a potable or purified water source for the purpose of disinfecting or controlling the microorganisms in the water source. Ozonated water or ozone gas may be produced and provided for various anti-microbial and cleansing applications of the consumer, such as washing food, clothing, dishes, countertops, toys, sinks, bathroom surfaces, and the like. Furthermore, the ozone generator may be used to deliver a stream of ozone-containing water for the purpose of commercial or residential point-of-use washing, disinfecting, and sterilizing medical instruments and medical equipment. For example, the ozone-containing water may be used directly or used as a concentrated sterilant for the washing, disinfecting, and sterilizing of medical instruments or equipment. Ozone gas may also be used in many of the foregoing examples, as well as in the deodorization of air or various other applications. The invention allows the electrochemical ozone generator to operate in a nearly or entirely passive manner with simplicity of design.
Abstract:
An ozone generator which operates at constant pressures to produce a continuous flow of ozone in an oxygen stream having from 10% to 18% by weight of ozone. The ozone generator includes one or more electrolytic cells comprising an anode/anode flowfield, a cathode/cathode flowfield, and a proton exchange medium for maintaining the separation of ozone and oxygen from hydrogen. The ozone generator also has an anode reservoir which vents oxygen and ozone and a cathode reservoir which vents hydrogen. The anode reservoir can be filled from the cathode reservoir while continuing to produce ozone. The ozone generator is readily configured for self-control using a system controller programmed to operate the anode reservoir at a constant pressure.
Abstract:
A reactor for removing impurities by electrochemcial means from liquids, such as aqueous solutions, and in which the liquid is passed through series of plateshaped reaction electrodes electrically insulated against each other with a liquid speed above a minimum to prevent dissociation into constituent gases, but sufficient to ensure interaction with an electrical current passing between the plateshaped electrodes. The latter has corrugated forms and/or their surfaces provided with embossed relief patterns to enhance the electrochemical effect between the electrodes. The reactor comprises one more interconnected units (A, B, C, D) with a series of plateshaped electrodes (1, 2) valve means (8) and holes (5, 6) in the plates for redirecting the liquid flow into and through the series of reaction electrodes (1, 2). An control system consists of a number of sensors (9, 10, 11) at the liquid inlet (3) of the reactor for measuring the conductivity of the treated liquid, the organic contents of the liquid and the flow of the liquid means (9null, 10null, 11null) for transferring the measurements to a processor (7) for further treatment, and means (13, 14, 15) for transferring the output commands from the processor (7) to the valve means (8) for redirecting the liquid flow and for activating or deactivating the electrode unit or units (A, B, C, D) in dependence on the measured parameters.
Abstract:
An apparatus for treating industrial wastes through electrolysis is disclosed. Steam or waste steam is utilized to heat the electrolyzing apparatus so as to separate contamination materials from the waste water, thereby treating the waste water. An electrolyzing tank has a waste water inlet on the bottom thereof, and a steam supply pipe is wound around the electrolyzing tank, for heating the electrolyzing tank during a passing of steam through the pipe. An insulating tube is formed inside the electrolyzing tank, and is coated with an insulating material on inside thereof, for insulating the electrolyzing tube from its contents. A cathode tube is installed within the insulating tank, for serving as a cathode during an electrolysis. An agitator having agitating blades is fixed on a shaft, the shaft is inserted into the center of the cathode tube, and anodes are attached on tips of the blades. An electrolyzing tank lid has a rotary joint at its center to rotatably retain an upper portion of the shaft of the agitator, and has a discharge hole for discharging the treated waste water. The treating efficiency can be drastically improved, a large scale treatment is possible, and the facility cost and the operating cost are low.
Abstract:
A water treatment unit uses an electrolytic cell generating chlorine and ozone. The electrolyte is brine, and the separation between the anode and the cathode of the cell is 2-30 cm. The generated chlorine and ozone are added to a stream of water to be treated, with the interposition of a turbulence promoting arrangement. The unit operation is automatically regulated from the working times of the cell and volume of water to be treated, and/or electrometrical probes as chlorine detectors.
Abstract:
A self cleaning electrolytic chlorinator for swimming pools and water treatment plants comprises a low voltage D.C. power supply unit which cyclically reverses the polarity at the electrodes to shed accumulated deposits which plate out on the electrode surfaces. Damage to the delicate catalytic coating on the electrodes is prevented by stepping the applied potential from a maximum to a minimum value before changing polarity and then stepping the applied potential back to a maximum value.