Abstract:
A measuring device for determining a pressure map during application of pressure to at least one measurement layer between a first pressure body and a second pressure body the measuring device comprising: (i) at least one transmitter located on one peripheral edge of the measurement layer for emission of signals in the form of electromagnetic waves along a first signal route which runs through the measurement layer and at least one other signal route which runs through the measurement layer, and (ii) at least one receiver located on the peripheral edge for reception of the signals of the first signal route and other signal route(s), which signals are sent by the transmitter through the measurement layer and can be changed when pressure is applied. Furthermore this invention relates to a corresponding method.
Abstract:
Methods of capturing improved-contrast mode spectra of a double ion-exchanged (DIOX) glass sample using prism coupling of index np. The DIOX glass sample has a refractive index profile with a first region adjacent the surface that satisfies 0.0005 ≤ λ n n x ≤ 0.0009 , where λ is a wavelength of measuring light. The prism-sample interface includes an interfacing liquid of index nf that differs from np by no more than 0.03, and that can exceed np. The mode spectra have a contrast that is higher than that obtained by conventional prism coupling by using gradient illumination or partially blocked illumination that reduces the amount of background reflected light from the coupling prism. The improved-contrast mode spectra can be processed using conventional means to determine at least one stress characteristic of the DIOX glass sample.
Abstract:
A method and system for analysis of a viscoelastic response in a deformable material. The system includes a light source configured to provide linearly polarized light and a polariscope configured to receive said linearly polarized light and to generate an image associated with a viscoelastic response of said deformable material. The system also includes a machine vision system configured to operate on the image to locate the response on the deformable material and to classify the response as one of a plurality of predefined types of responses. A display may then be provide that is configured to provide feedback of the location of the viscoelastic response and classification of the response to a user of said system.
Abstract:
A toy, art object, decoration, ornament, entertainment device, advertising device, paperweight, or other device is made of a soft deformable plastic material in shapes of prisms, lenses, wedges, cubes, pyramids, as well as other forms that display the changing stress patterns formed by deformations of the photoelastic material. Magnets embedded in the material apply forces that create new patterns. Polarizing films within, or covering the clear plastic enhance the viewing effects. External forces, such as manual manipulation, springs, strings, elastic bands, clamps and other devices are used to create interesting optical effects. The viewing effects increase the entertainment and aesthetic value of the devices.
Abstract:
A force sensor according to embodiments includes a light-emitting unit, a pair of first light detectors, a reflector, and a first frame. The light-emitting unit emits diffuse light. The first light detectors are arranged in a first direction with the light-emitting unit interposed therebetween. The reflector is arranged to face the light-emitting unit on an optical axis of the light-emitting unit and reflects the diffuse light emitted from the light-emitting unit toward the first light detectors. The first frame is deformed in the first direction so that a reflection range of the diffuse light reflected by the reflector is displaced in the first direction.
Abstract:
Various technologies described herein pertain to a tactile sensor that senses normal load and/or shear load. The tactile sensor includes a first layer and an optically transparent layer bonded together. At least a portion of the first layer is made of optically reflective material. The optically transparent layer is made of resilient material (e.g., clear silicone rubber). The tactile sensor includes light emitter/light detector pair(s), which respectively detect either normal load or shear load. Light emitter(s) emit light that traverses through the optically transparent layer and reflects off optically reflective material of the first layer, and light detector(s) detect and measure intensity of reflected light. When a normal load is applied, the optically transparent layer compresses, causing a change in reflected light intensity. When shear load is applied, a boundary between optically reflective material and optically absorptive material is laterally displaced, causing a change in reflected light intensity.
Abstract:
A measurement unit for tensile or compressive stress can includes a CCD camera for detecting an interference light, the interference light being formed with a measurement beam from a measured region and a reference beam from a reference mirror. A first objective lens can have the reference mirror. An image processing apparatus can measure the three-dimensional shape of the measured region from the position of the first objective lens at which the interference light provides the maximum contrast and can measure the distance between two gauge points on the basis of the three-dimensional shape. When strain is generated on a micromaterial, the strain against the measured tensile stress is measured on the basis of the tensile stress and the distance between the two gauge points.
Abstract:
Shown are a device (26) and a method for detecting the deflection of a plurality of elastic elements (22), wherein the elastic elements (22) can be deflected out of a rest position against a restoring force and are suitable as resonators and/or for measuring a force acting on a respective elastic element (22). The elastic elements (22) are arranged periodically, The arrangement of the elastic elements (22) is illuminated using light, the coherence length of which is larger than the average spacing of adjacent elastic elements (22). A diffraction image is hereby created of the illuminating light scattered on the arrangement of elastic elements (22), and at least a portion of the diffraction image is detected by an optical sensor (32) directly or after interaction with further optical components. The detected image or image signal is subsequently analysed in order to determine information relating to the deflection state of the elastic elements (22) therefrom.
Abstract:
A system for measuring thin film stress (anisotropic or isotropic), such as from thin film deposition onto semiconductor substrates found in semiconductor manufacturing. The system uses resettled volume difference (V2−V1) of the surface of a material to calculate stress. The system includes A) A means to collect 3D surface point positions of a body by reflecting an image or light from the material surface into a sensor. B) A method to calculate volume from 3D surface points. C) A method to calculate thin film stress from resettled volume difference (V2−V1). D) A 3D Integrated Magnification Environment (3D-IME) to analyze 3D models of a body with a single axis (the height axis) magnified in an effort to observe the effects of stress on the body, before and after stress is applied, such as from film deposition). Calculating stress from resettled volume difference (V2−V1) eliminates the inaccuracy of calculating stress from the change in surface curvature or radius ( 1 R 2 - 1 R 1 ) , caused by the non-spherical deformation of anisotropic materials, such as semiconductor substrates (eg: silicon wafers) in semiconductor manufacturing.
Abstract translation:用于测量薄膜应力(各向异性或各向同性)的系统,例如从在半导体制造中发现的半导体衬底上的薄膜沉积。 该系统使用材料表面的安置体积差(V2-V1)来计算应力。 该系统包括A)通过将图像或光从材料表面反射到传感器中来收集身体的3D表面点位置的方法。 B)从3D表面点计算体积的方法。 C)从安置体积差(V2-V1)计算薄膜应力的方法。 D)用于分析具有单轴(高度轴)的身体的3D模型的3D集成放大环境(3D-IME)被放大,以便在施加应力之前和之后观察应力对身体的影响,例如 从膜沉积)。 计算应力从安置的体积差(V2-V1)消除了由各向异性材料(如半导体衬底)的非球形变形引起的表面曲率或半径(1 R 2 - 1 R 1)变化计算应力的不精确度 (例如:硅晶片)。
Abstract:
According to one aspect, the invention provides an optical sensor for measuring a force distribution, comprising a substrate; one or more light emitting sources and one or more detectors provided on the substrate, the detectors responsive to the light emitted by the sources; wherein a deformable opto-mechanical layer is provided on said substrate with light responsive properties depending on a deformation of the opto-mechanical layer.The design of the sensor and particularly the use of optical components in a deformable layer make it possible to measure the contact force accurately. The sensor is scalable and adaptable to complex shapes. In one embodiment also a direction of the contact force can be determined.