Abstract:
A laser pulse sequence measuring method for measuring a delay between a pair of pulses from two laser pulse sequences (1, 2), comprises the steps of creating a first laser pulse sequence (1) of first laser pulses (1A) and a second laser pulse sequence (2) of second laser pulses (2A), and generating a delay signal (3) which represents the delay between the pair of pulses from the first and second laser pulse sequences (1, 2), wherein the step of generating the delay signal (3) includes creating intra-pulse difference frequency generation (IPDFG) pulses (4) by applying intra-pulse difference frequency generation to the first laser pulses (1A) in a difference frequency generation (DFG) medium (21), providing phase-stable reference waveforms (5) based on the IPDFG pulses (4), and electro-optic sampling (EOS) of the electric field of the phase-stable reference waveforms (5) with sampling pulses (6) in an EOS medium (22), wherein the sampling pulses (6) are created based on the second laser pulses (2A), for generating an electro-optic sampling (EOS) signal (7), wherein the delay signal (3) is obtained from the EOS signal (7). Furthermore, a spectroscopic measuring method, a laser pulse sequence measuring apparatus (100) and a spectroscopic measuring apparatus are described.
Abstract:
A particle analysis method and apparatus, including a spectrometry-based analysis of a fluid sample (1), comprises the steps of creating a sample light beam S and a probe light beam P with a light source device (10) and periodically varying a relative phase between the sample and probe light beams S, P with a phase modulator device (20), irradiating the fluid sample (1) with the sample light beam S, detecting the sample and probe light beams S, P with a detector device (40), and providing a spectral response of the at least one particle (3), wherein the light source device (10) comprises at least one broadband source, which has an emission spectrum covering a mid-infrared MIR frequency range, and the phase modulator device (20) varies the relative phase with a scanning period equal to or below the irradiation period of irradiating the at least one particle (3, 4).
Abstract:
The present invention relates to an antibody-drug conjugate (ADC) comprising: (a) Brentuximab, wherein Brentuximab comprises at the C-terminus of the light chains, the heavy chains or all of the heavy and light chains of the Brentuximab a recognition sequence for tubulin tyrosine ligase and a non-natural amino acid; and (b) at least one drug moiety; wherein a drug moiety is coupled to each of the non-natural amino acids via a linker. The present invention further relates to methods of producing same, pharmaceutical compositions comprising same as well as uses thereof.
Abstract:
A pulse laser apparatus (100) for creating laser pulses (1), in particular soliton laser pulses (1), based on Kerr lens mode locking of a circulating light field in an oscillator cavity (10), comprises at least two resonator mirrors (11, 12, . . . ) spanning a resonator beam path (2) of the oscillator cavity (10), at least one Kerr-medium (21, 22, 23) for introducing self-phase modulation and self-focusing to the circulating light field in the oscillator cavity (10), at least one gain-medium (31) for amplifying the circulating light field in the oscillator cavity (10), and a tuning device (40) for setting a first mode-locking condition and a second mode-locking condition of the oscillator cavity (10) such that an intra-cavity threshold-power for mode-locking at the first mode-locking condition is lower than that at the second mode-locking condition, wherein the first mode-locking condition is adapted for starting or shutting-down of the Kerr lens mode locking and the second mode-locking condition is adapted for continuous Kerr lens mode locking and a resonator-internal peak-power of the circulating light field is higher at the second mode-locking condition than at the first mode-locking condition. Furthermore, a method of operating a pulse laser apparatus is described.
Abstract:
A method of controlling output pulses of a pulse laser device (100) including thin-disk laser medium (10), in particular controlling a carrier-envelope phase and/or an intensity noise of the output pulses, includes pumping thin-disk laser medium (10) of pulse laser device (100) with multiple pump laser diodes (21, 22, 23), having at least one modulated laser diode (21, 22) powered by current source (31, 32) with modulation capability, and controlling the output pulses by modulating the output power of the at least one modulated laser diode (21, 22), which is modulated by controlling a drive current thereof, wherein the pump laser diodes further include at least one stable laser diode (23), having constant output power, and the output power of the at least one modulated laser diode (21, 22) is smaller than the whole output power of the stable laser diode(s) (23). A pulse laser device (100) is also described.
Abstract:
A multiple frequency comb source apparatus (100) for simultaneously creating a first laser pulse sequence representing a first frequency comb (1) and at least one further laser pulse sequence representing at least one further frequency comb (2), wherein at least two of the first and at least one further pulse sequences have different repetition frequencies, comprises a laser resonator device (10) comprising multiple resonator mirrors including first end mirrors EM1,OC1 providing a first laser resonator (11), a laser gain medium (21, 22) being arranged in the laser resonator device (10), and a pump device (30) being arranged for pumping the laser gain medium (21), wherein the laser resonator device (10) is configured for creating the first and at least one further laser pulse sequences by pumping and passively mode-locking the laser gain medium (21), the resonator mirrors of the laser resonator device (10) include further end mirrors EM2, OC2 providing at least one further laser resonator (12), the first laser resonator (11) and the at least one further laser resonator (12) share the laser gain medium (21), resonator modes of the first laser resonator (11) and the at least one further laser resonator (12) are displaced relative to each other, wherein the resonator modes are located in the laser gain medium (21) at separate beam path spots, and at least one of the first and further end mirrors EM1, EM2, OC1, OC2 is adjustable so that the repetition frequency of at least one of the first and at least one further laser pulse sequences can be set independently from the repetition frequency of the other one of the first and at least one further laser pulse sequences. Furthermore, a spectroscopic measuring method, a spectroscopy apparatus and a multiple frequency comb generation method are described.
Abstract:
The present invention relates to reagents suitable in the mass spectrometric determination of analyte molecules such as carbohydrates as well as adducts of such reagents and analyte molecules and applications of said reagents and adducts. Further, the present invention relates to methods for the mass spectrometric determination of analyte molecules.
Abstract:
Embodiments of the invention include a semiconductor light emitting device with a light emitting layer disposed between an n-type region and a p-type region. The light emitting layer emits first light. The device further includes AE1-xLi2Be4O6:Eux, wherein AE=one or more of Sr, Ba, Ca, disposed in the path of the first light. The AE1-xLi2Be4O6:Eux absorbs first light and emits second light. In some embodiments, the first light and second light may be blue.
Abstract:
Embodiments of the invention include a semiconductor light emitting device with a light emitting layer disposed between an n-type region and a p-type region. The light emitting layer emits first light. The device further includes AE1-xLi2Be4O6:Eux, wherein AE=one or more of Sr, Ba, Ca, disposed in the path of the first light. The AE1-xLi2Be4O6:Eux absorbs first light and emits second light. In some embodiments, the first light and second light may be blue.
Abstract:
Embodiments of the invention include a light source and a nitridoberyllate phosphor disposed in a path of light emitted by the light source. The nitridoberyllate phosphor includes a trigonal planar BeN3 structure and/or a tetrahedral Be(N,O)4 structure.