摘要:
Herein disclosed is an optical modulator, comprising: an optical waveguide (3); and a traveling wave electrode (4) including an interaction portion (9) for modulating a phase of incident light and an input feed-through portion (7), in which the optical modulator further comprises at least one impedance transformation portion for reducing an impedance mismatching between a characteristic impedance of the interaction portion and at least one of characteristic impedances of the input feed-through portion, a connector electrically connected to the input feed-through portion, and an external circuit, at least one of the impedance transformation portions has a characteristic impedance which is different from a geometric mean of the characteristic impedances of said interaction portion and said input feed-through portion, a geometric mean of the characteristic impedances of the interaction portion and the connector, or a geometric mean of the characteristic impedances of the interaction portion and the external circuit.
摘要:
An optical modulator is provided with a stripe-shaped optical waveguide, which has an upper clad layer, a lower clad layer formed between the upper clad layer and a substrate, and an undoped core layer which is arranged between the upper clad layer and the lower clad layer and has a complex refractive index that changes corresponding to the intensity of an applied electric field, to a signal light propagating inside. On the both sides of the stripe-shaped optical waveguide, conductor walls are configured by arranging a pair of parallel blocking flat boards with an insulating wall in between. Thus, the semiconductor optical modulator having a high optical modulation efficiency is provided
摘要:
It is an object of the invention to provide a light modulator using a thin plate having a thickness of 20 μm or less and capable of stably holding a conductive film suppressing troubles such as resonance phenomenon of microwaves in a substrate and pyro-electric phenomenon and to provide a method of fabricating the light modulator. The light modulator includes: a thin plate (10) formed of a material having an electro-optic effect and having a thickness of 20 μm or less; a light waveguide (11) formed on the front or rear surface of the thin plate; and modulation electrodes (13, 14) formed on the front surface of the thin plate to modulate light passing through the light waveguide. The light modulator further includes a reinforcing plate (16) bonded to the rear surface of the thin plate and a conductive film (17) continuously formed in the range from the side surface of the thin plate to the side surface of the reinforcing plate.
摘要:
In an optical modulator according to the invention, with respect to two MZ type optical modulators connected to each other in tandem by a curved folded waveguide on an identical substrate, a longitudinal direction of an MZ type optical waveguide unit on an optical input port side is obliquely arranged to a longitudinal direction of an MZ type optical waveguide unit on an optical output port side, and a curvature radius of the curved folded waveguide is made larger than a half of an interval between the optical input/output ports to decrease a length of a feeder portion of a signal electrode corresponding to the MZ type optical waveguide unit on the input side. Therefore, a loss of an electric signal propagated through the signal electrode can be reduced.
摘要:
High speed optical modulators can be made of k modulators connected in series disposed on one of a variety of semiconductor substrates. An electrical signal propagating in a microwave transmission line is tapped off of the transmission line at regular intervals and is amplified by k distributed amplifiers. Each of the outputs of the k distributed amplifiers is connected to a respective one of the k modulators. Distributed amplifier modulators can have much higher modulating speeds than a comparable lumped element modulator, due to the lower capacitance of each of the k modulators. Distributed amplifier modulators can have much higher modulating speeds than a comparable traveling wave modulator, due to the impedance matching provided by the distributed amplifiers.
摘要:
In the bias stabilization control using average optical power of signal light, there is a case where a control algorithm (maximum control or minimum control) changes depending on the amplitude of clock voltage, or it becomes out of control. In an optical modulation device for performing CSRZ optical modulation on outgoing light from an optical source, control light inputted from a control light input path is inputted into an LN-MZ optical modulator having traveling-wave type modulating electrodes from a direction opposite to signal light, and the average optical power is detected by a photodetector. A bias-voltage Vb is so generated that this optical power may be minimized, and is applied to a bias input terminal, whereby automatic bias stabilization control is performed.
摘要:
Embodiments of the invention provide an electro-absorption modulator including an optical waveguide and a microwave waveguide. The microwave waveguide is electromagnetically coupled to the optical waveguide. The optical waveguide includes a quantum well region and a substantially sinusoidal structure. The waveguide mode of the optical waveguide is responsive to the substantially sinusoidal structure.
摘要:
Traveling-wave optoelectronic wavelength conversion is provided by a monolithic optoelectronic integrated circuit that includes an interconnected traveling-wave photodetector and traveling-wave optical modulator with a widely tunable laser source. Either parallel and series connections between the photodetector and modulator may be used. An input signal modulated onto a first optical wavelength develops a traveling wave voltage on transmission line electrodes of the traveling-wave photodetector, and this voltage is coupled via an interconnecting transmission line of the same characteristic impedance to transmission line electrodes of the traveling-wave optical modulator to modulate the signal onto a second optical wavelength derived from the tunable laser. The traveling wave voltage is terminated in a load resistor having the same characteristic impedance as the photodetector and modulator transmission lines. However, the interconnecting transmission lines and the load resistor may have different impedances than the photodetector and modulator.
摘要:
Traveling-wave optoelectronic wavelength conversion is provided by a monolithic optoelectronic integrated circuit that includes an interconnected traveling-wave photodetector and traveling-wave optical modulator with a widely tunable laser source. Either parallel and series connections between the photodetector and modulator may be used. An input signal modulated onto a first optical wavelength develops a traveling wave voltage on transmission line electrodes of the traveling-wave photodetector, and this voltage is coupled via an interconnecting transmission line of the same characteristic impedance to transmission line electrodes of the traveling-wave optical modulator to modulate the signal onto a second optical wavelength derived from the tunable laser. The traveling wave voltage is terminated in a load resistor having the same characteristic impedance as the photodetector and modulator transmission lines. However, the interconnecting transmission lines and the load resistor may have different impedances than the photodetector and modulator.
摘要:
The present invention relates to an optical modulator including an optical waveguide, and at least one CPW-to-CPS transition. The CPW segments include a hot electrode; and a ground plane disposed on each side of the hot electrode, and they share a ground plane. The CPS segment extends along an interaction length of the modulator. In one embodiment, two driving signals are applied so that the modulator operates as a dual-drive modulator. In another embodiment, a domain-inverted region is formed in a substrate of the dual-drive modulator to overlap with one arm of the optical waveguide (MZI) and invert a sign of a phase shift induced in that arm. Finally, a fixed chirp can be introduced into the dual-drive modulator by asymmetrically positioning the interferometer arms into gaps of the CPW segments with respect to the hot electrode, and by employing unequal width gaps in the CPW segments.