Abstract:
An electric car includes a remote control calling system includes a transmitter and a car, and both of which have an electronic compass for detecting the terrestrial magnetism to obtain an azimuth and calculating the azimuth difference of the two by simple computations. The system automatically controls the direction of the car driving towards a user, and achieves the purposes of simplifying the car structure and facilitating its use.
Abstract:
An automated object following system includes a tracker associated with a following device, and a guider associated with an object to be followed. The tracker includes a first processor, and at least two transducers for generating an encoded ultrasonic signal. Each transducer has a control input communicating with the first processor for emitting an encoded ultrasonic signal generally toward the guider in response to a command signal from the first processor. The encoded ultrasonic signals carry signal source identification information. A radio frequency (RF) receiver communicates with the first processor for receiving from the guider an encoded RF signal carrying distance and direction information of the guider relative to the tracker to be used for steering the following device toward the object to be followed.
Abstract:
A golf cart or caddy and a mobile transmitting device carried by a golf player are each provided with a receiving and evaluating device equipped with a computer for a satellite-controlled positioning system. The two receiving and evaluating devices calculate the respective positions of the golf player and the golf caddy from the signals cyclically received from the satellite system. The mobile transmitting device is provided with a high-frequency manual transmitter which transmits, also cyclically, the positions of the golf player to the golf caddy. The computer of the golf caddy calculates direction and distance of the golf player and stores the data up to the time when the caddy follows the stored path upon a signal. The golf caddy stops at a predetermined distance from the golf player. When a stationary reference transmitter is additionally used for correcting the position data of the golf player and the golf caddy received from the satellite system, specific areas of the golf course can be excluded as forbidden areas, so that these will not be traveled by the golf caddy.
Abstract:
The ultrasonic tracking control effects that a pacemaker going ahead is automatically tracked by an automotive vehicle at a predetermined distance. To this end, a control unit (13) of the vehicle (10) is equipped with two ultrasonic units (F1,F2) comprising a transceiver device for ultrasonic signals each. The pacemaker going ahead carries a second control unit (14) with a transponder (S) responding to the signals of the ultrasonic units (F1,F2). Upon reception of an ultrasonic signal, the transponder (S) outputs a response signal which is received by the respective ultrasonic unit. The distance of the vehicle from the pacemaker and the tracking angle (.alpha.) are determined in the first control unit (13) from the signals received by the ultrasonic units (F1,F2), and traveling and steering signals are generated such that the vehicle tracks the pacemaker at a predetermined distance.
Abstract:
A radio-controlled vehicle having a steering motor, a drive motor, a drive mechanism, and a direction sensor for receiving an RF signal from a remote station to actuate the drive motor and to control the steering motor to direct the vehicle to the station. Also, an ultra-sonic anti-collision circuit for preventing the vehicle from colliding with any obstacle lying in the way of its travel. The direction sensor includes an integrating circuit to remove noise components from the direction control signal to thereby provide precise control to the drive mechanism. The ultra-sonic anti-collision circuit includes circuits for preventing malfunction of the anti-collision circuit due to mechanical shocks and/or vibrations of the vehicle.
Abstract:
A vehicle for traversing an area with a minimal environmental impact is described. The vehicle includes a first component that creates a first environmental impact when the vehicle is traversing in the area. The vehicle further includes a second component configured to reduce the first environmental impact.
Abstract:
Embodiments for an intelligent electric low speed vehicle (LSV) with a reconfigurable payload structure are described. A plurality of operational profiles respectively associated with a plurality of payload configurations are stored. A first payload configuration from the plurality of payload configurations is determined based on a first payload capability requirement for the LSV. The LSV configured with the first payload configuration is controlled with a first operational profile of the plurality of operational profiles to traverse a first area with a minimal environmental impact. The first operational profile is associated with the first payload configuration.
Abstract:
A autonomous robotic golf caddy which is capable of following a portable receiver at a pre-determined distance, and which is capable of sensing a potential impending collision with an object in its path and stop prior to said potential impending collision.
Abstract:
A autonomous robotic golf caddy which is capable of following a portable receiver at a pre-determined distance, and which is capable of sensing a potential impending collision with an object in its path and stop prior to said potential impending collision.
Abstract:
The wheel assembly includes an arm 51, a wheel 55, a power supply port 60, an electric motor 56 coupled to the wheel 55, and a motor controller 62 for controlling rotation of the electric motor 56. The method of controlling the motion of a motorised object includes defining a target position, sensing a current position of the motorised object and using an output from a processor to control the electric motors to drive the object toward the target position. The golf club storage and transport device 70 includes a body 71 for storing golf clubs and a pair of releasable wheels 75. The device 70 has an assembled configuration and a disassembled configuration.