摘要:
A wavelength converter for generating a wavelength tunable laser optical source in itself is disclosed. The wavelength converter includes a first semiconductor optical amplifier for generating an optical noise, generating and outputting a first optical source by amplifying the generated optical noise if an external current is applied, first and second distributed Bragg reflectors for reflecting only a component of a specified wavelength range among components of the optical noise and applying the reflected component to the first semiconductor optical amplifier, and a second semiconductor optical amplifier for receiving an optical source divided from the optical source reflected by and outputted from the first distributed Bragg reflector and an input data optical source, generating and outputting a second optical source by changing a phase of the divided optical source according to a digital signal from the input data optical source. The first and second optical sources outputted from the first and second semiconductor optical amplifiers are added together, and a signal of which the wavelength is converted through either a constructive interference or a destructive interference of the added first and second optical sources is outputted.
摘要:
A ring cavity laser has at least two facets and a mechanism is provided to produce unidirectional propagation and light emission at a first wavelength. A source of laser light at a second wavelength is injected into the cavity to reverse the direction of propagation and to produce emission at the second wavelength.
摘要:
A method and apparatus for transferring information of an optical information-bearing signal from a first wavelength to a second wavelength. The method is implemented in an all-optical wavelength converter circuit which includes a laser diode in communication with a polarization controller. An information-bearing signal having a first wavelength is input to the circuit. A polarization controller adjusts the polarization of the information-bearing signal. The laser diode receives the polarization-adjusted information-bearing signal and generates a converted information-bearing signal by transferring the information of the polarization-adjusted information-bearing signal from the first wavelength to the second wavelength. The polarization controller receives the converted information-bearing signal from the laser diode, and polarizes the converted information-bearing signal.
摘要:
A ring cavity laser has at least two facets and a mechanism is provided to produce unidirectional propagation and light emission at a first wavelength. A source of laser light at a second wavelength is injected into the cavity to reverse the direction of propagation and to produce emission at the second wavelength.
摘要:
A photodetector has a spatially varying absorption spectrum formed in a monolithic InGaAsP structure whose quantum well active structure has modified effective bandgap properties. A waveguide couples light to the quantum well active structure. The spatially varying absorption spectrum allows wavelength-division demultiplexing. The effective bandgap properties can be modified by rapid thermal annealing to cause the diffusion of defects from one or two InP defect layers into the quantum well active structure.
摘要:
The present invention relates to a method, device, and system for waveform shaping of signal light. The device for waveform shaping of signal light according to the present invention includes a distributed feedback (DFB) laser having a stop band defined as the range of wavelengths allowing laser oscillation, and a drive circuit for supplying a drive current to the DFB laser so that the DFB laser oscillates at a first wavelength included in the stop band. Signal light having a second wavelength not included in the stop band is input into the DFB laser. In the case that the signal light is provided by optical pulses each having a high level and a low level, amplitude fluctuations at the high level of the signal light can be effectively suppressed by suitably setting the power of the signal light.
摘要:
It is necessary to use the continuous wave (CW) light and the optical input signal in the same direction in order to improve the conversion speed. Furthermore, in order to simplify the configuration of the optical transmission system including wavelength converters, the function capable of separating or removing the optical input signal should be included. Filter-free wavelength converters for separating and rejecting the optical input signal are being developed using the multimode interference semiconductor optical amplifier (MMI-SOA). The gain or phase modulation of the CW light is caused in the MMI-SOA. Furthermore, the CW light and the optical input signal are separated in the MMI-SOA in which the output port depends on the input port. Therefore, no optical filter is required for rejecting the optical input signal, and it is possible to converse to the same wavelength. Owing to filter-free wavelength conversion, the use of a tunable light source is available so that the configuration of the wavelength division multiplexed (WDM) network system can be small-sized and variably employed, thereby the performance and the capacity of optical communication system can be improved.
摘要:
Carriers are injected into a plurality of quantum dots by applying a bias voltage to a semiconductor region of a semiconductor optical amplifier, the plurality of quantum dots for three-dimensionally confining carriers being distributed in the semiconductor region. An optical pulse signal at a bit rate of 2 Gb/s or higher is input to the semiconductor optical amplifier which amplifies the input optical pulse signal by generating induced emission by optical transition of the carriers in the quantum dots. An optical signal processing method capable of high speed and stable operation is provided.
摘要:
The present invention relates to a wavelength converter apparatus for ultra-high speed optical signal process. So, the present invention (a)embodies a wavelength converter which does not need an outer pump light by composing a semiconductor optical amplifier-ring type laser and (b)provides a wavelength converter apparatus for ultra-high speed optical signal process which embodies to be always operated wavelength conversion to be always possible within the amplifying bandwidth(about 40 mm) of SOA by a wavelength-tunable optical band pass filter deposited in a laser resonator. Therefore, the present invention (a)does not need the external pump light because converted wavelength is tuned within the amplifying bandwidth of SOA, and the own laser oscillation wavelength is used as a pump light, (b)can be used as an original WDM optical wavelength converter because the present invention can be used in the range 1.55 um, and (c) can be used not only as an ultra-high speed optical communication element of next generation(such as ultra-high speed all-optical wavelength converter over 10 Gbps) but also as an optical switch element (such as an optical signal connector) because the reaction speed of SOA which is used as a wavelength converter is up to sub-pico second and the wavelength conversion is possible up to the speed terra bit per a second.
摘要:
An integrated optoelectronic semiconductor component is presented, which can equally process light signals of any polarization direction. Such semiconductor components are used for digital optical telecommunications. The semiconductor component has active (A) and passive (B) waveguide sections, which comprise a number of semiconductor layers (SP) with so-called multiple quantum well structures. The semiconductor layers (SP) are deposited by a process known as selective area growth (SAG). A portion of the semiconductor layers has a lattice constant which is smaller than the lattice constant of a substrate (SUB). This creates a biaxial tensile strain in these layers. The tensile strain is optimized in the active waveguide sections (A) to attain polarization independence. Furthermore a process is described whereby such a semiconductor component can be manufactured.