摘要:
In an embodiment a method for manufacturing a light-emitting semiconductor chip includes providing a substrate having a main surface with at least one recess, the main surface having a main extension plane along the longitudinal direction and along a transversal direction perpendicular to the longitudinal direction, wherein the substrate has pre-patterning trenches formed along the transversal direction between chip regions and extending along the longitudinal direction, growing the semiconductor layer sequence on the main surface with the at least one recess and forming at least one facet aligned along the transversal direction in the semiconductor layer sequence by an etching process, wherein the facet has a distance of less than or equal to 50 μm from the at least one recess in at least one direction parallel to the main extension plane of the main surface.
摘要:
A semiconductor optical element has an active layer including quantum dots. The density of quantum dots in the resonator direction in a portion of the active layer in which the density of photons is relatively high is increased relative to the density of quantum dots in a portion of the active layer in which the density of photons is relatively low.
摘要:
Semiconductor substrate is disclosed having quantum wells having first bandgap, and quantum wells having second bandgap less than second bandgap. Semiconductor structure is disclosed comprising substrate having quantum wells having given bandgap, other quantum wells modified to bandgap greater than given bandgap. Semiconductor substrate is disclosed comprising wafer having quantum wells, section of first bandgap, and section of second bandgap greater than first bandgap. Method for forming semiconductor substrate is provided, comprising providing wafer having given bandgap, depositing dielectric cap on portion and rapid thermal annealing to tuned bandgap greater than given bandgap. Semiconductor structure is disclosed comprising substrate having quantum wells modified by depositing cap and rapid thermal annealing to tuned bandgap greater than given bandgap. Method for forming semiconductor substrate is disclosed, comprising providing wafer having quantum wells having given bandgap, depositing cap on portion and rapid thermal annealing to tuned bandgap greater than given bandgap.
摘要:
The invention is in the field of distributed Raman amplification for digital and analog transmission applications and other applications, e.g., instrumentation and imaging applications, including HFC-CATV applications. In particular, the invention uses a high power broadband source of amplified spontaneous emission (ASE) as the Raman pump source for improved system performance. The invention also includes methods for constructing such a high-power broadband Raman pump.
摘要:
An optical gain medium, and a method for forming the same, is provided that exhibits lower wavelength crosstalk when configured as an optical amplifier than prior art optical gain media. The optical gain medium of the present invention includes a buried heterostructure waveguide fabricated in a multiple quantum well (MQW) region. The MQW region in which the buried heterostructure waveguide is located exhibits a continuously changing bandgap as a function of position along the waveguide direction, preferably such that the gain provided by the optical gain medium changes exponentially as a function of position along the waveguide direction. In a preferred embodiment, the MQW region in which the buried heterostructure waveguide is buried is grown using a selective-area-growth (SAG) technique, and is made up of at least two quantum wells, with at least one of the quantum wells having a size and composition that vary as a function of position along the waveguide direction.
摘要:
A Semiconductor Optical Amplifier (SOA) with extended bandwidth and the method of fabricating the same are disclosed. In one embodiment, the SOA includes a Multiple Quantum Well (MQW) stacks whose thickness varies along the length of the device. The SOA has a flatter and broader gain spectrum than SOAs with substantially flat MQW stacks.
摘要:
A semiconductor laser device has a quantum well active layer including a well layer and a barrier layer laminated on a semiconductor substrate. The quantum well active layer contains II group atoms such as Zn atoms. The quantum well active layer is so formed that a bandgap of the quantum well active layer in the vicinity of an end surface of a laser resonator is larger than a bandgap of the quantum well active layer inside the laser resonator. The II group atoms contained in the quantum well active layer inside the laser resonator make up for vacancies introduced therein so as to inhibit fluctuation of the bandgap of the quantum well active layer inside the laser resonator and thereby to enhance long-term reliability of the semiconductor laser device.
摘要:
A semiconductor optical functional device is divided into two regions of a first region 1 and a second region 2 adjacent to each other in a longitudinal direction of a semiconductor optical waveguide. The first region 1 is provided with a region including an MQW structure in which a compressive strain is introduced, and the second region 2 is provided with a region including an MQW structure in which a tensile strain is introduced. Electrodes 3 and 4 formed separately and independently from each other are respectively disposed on the first region 1 and the second region 2, and bias voltages applied to the electrodes 3 and 4 are adjusted so that transmissivities for light having a TE mode component and light having a TM mode component are independently controlled.
摘要:
A surface emitting light emitting device with a semiconducting substrate, a semiconducting mirror stack positioned on the substrate surface, a spacer layer positioned on the mirror stack, an active region positioned on the spacer layer, a second spacer layer positioned on the active region, a second semiconducting mirror stack positioned on the second spacer layer, and a top contact layer positioned in contact with the second semiconducting mirror stack. The active region includes multiple quantum wells each having a different transition wavelength and positioned on the spacer layer with the quantum well possessing the longest transition wavelength located closest to the spacer layer and additional quantum wells of the multiple quantum wells positioned in order of decreasing transition wavelength so that the sum of the emission from all of the quantum wells results in a broad and uniform output emission spectrum.
摘要:
The broadband semiconductor optical amplifier fabricated in accordance with the teachings of the present invention comprises first and second active semiconductor regions (50, 51) disposed in tandem with each other, and means for injecting current (I.sub.1,I.sub.2) into the first and second active semiconductor regions to provide gain distributions over wavelength regions in the two active semiconductor regions which partially overlap to form a combined gain distribution over a wider range of wavelengths. Anti-reflection coatings (54, 55) are disposed on the extreme ends of the combined structure. Tuneable wavelength selective amplification over the wider range is achieved in various embodiments by including a tunable optical bandpass filter (53) or by including various tunable auxiliary light guiding structures (115, 116; 140; or 450) to which and from which light power is coupled from and to the active semiconductor regions of the amplifier, respectively.