Abstract:
A method is provided for processing a virtual address for a program requesting a DMA transfer. The program is designed to be run in user mode on a system on a chip that includes a central processing unit, a memory management unit, and a DMA controller. The virtual address is a source virtual address or a destination virtual address and has a size of N bits. According to the method, the virtual address is divided into at least two fields of bits. For each of the fields, there is created an N-bit address word comprising a prefix having a given value associated with the field and having more than 1 bit, and the field. The DMA controller is programmed using multiple store instructions that include one store instruction relating to each of the address words created.
Abstract:
A method for monitoring the execution of a sequence of instruction codes in an integrated circuit comprising a central processing unit provided for executing such instruction codes. Current cumulative signatures are produced using deterministic address, control or data logic signals involved in the execution of the sequence and taken off at various points of the integrated circuit. A final cumulative signature is compared with an expected signature and an error signal is produced if the two signatures are not identical. Particularly useful to secure integrated circuits for smart cards.
Abstract:
A circuit and a method are provided for securing a coprocessor dedicated to cryptography. The disclosed circuit includes a scrambling register and an accessory input register to convey scrambling information in the form of electrical signals that disturb the visibility of certain electrical signals associated with confidential information such as digital keys.
Abstract:
A method for monitoring the execution of a sequence of instruction codes in an integrated circuit comprising a central processing unit provided for executing such instruction codes. In one embodiment, the method comprises producing current cumulative signatures during the execution of a sequence, until a final cumulative signature is obtained, producing an error signal having a value active by default while the current cumulative signature is different to an expected signature, measuring a predetermined time interval that is substantially longer than the presumed duration of execution of the sequence, masking the error signal during the measurement of the time interval, and lifting the masking of the error signal when the time interval expires.
Abstract:
A motion estimation method and device are provided for processing images to be inserted, between a preceding original image and a following original image, in a sequence of images. Each of the images is divided into several pixel blocks. A motion vector is associated with each block of a processed image. For a current block of an image currently being processed, motion vectors associated with blocks of the image currently being processed and/or of an already processed image are selected. For each motion vector selected, an updating vector is determined. Candidate vectors are generated from the selected motion vectors and the updating vectors. A vector is elected from among the candidate vectors. Information associating the elected motion vector with the current block is stored in memory. The updating vector is determined on the basis of a calculated confidence value stored in memory for each associated motion vector.
Abstract:
A logic circuit comprises a logic module comprising a functional logic block supplying a functional result, and a functional flip-flop receiving the functional result and supplying a synchronous result. A module for checking the functional logic block comprises a checking logic block executing the same logic function as the functional logic block and supplying a checking result, checking synchronous flip-flops for applying data present at the input of the functional logic block to the input of the checking logic block, and means for comparing the functional result and the checking result and for supplying a first error signal.
Abstract:
The configurable electronic device comprises a configurable electronic device includes at least one configurable basic assembly. The basic assembly includes a programmable circuit having a plurality of programmable elements, and a first configurable interconnection network for mutually connecting the programmable circuits. A plurality of configurable arithmetic cells are mutually connected by a second configurable interconnection network. A third configurable interconnection network links the programmable circuit and the configurable arithmetic cells. A control bus is between the programmable circuit and the configurable arithmetic cells, and also extends within the configurable arithmetic cells.
Abstract:
The present invention relates to a non-volatile memory comprising a memory array comprising functional memory cells and non-functional memory cells linked to at least one non-functional word line. A word line address decoder comprises a special decoding section linked to the non-functional word line, for selecting the non-functional word line when a functional word line is read-selected, such that non-functional memory cells are selected simultaneously with the functional memory cells, and distort the reading of the functional memory cells. Application particularly to integrated circuits for smart cards.
Abstract:
A chip circuit comprising a chip which comprises a semiconductor substrate and substantially plane components formed on the said substrate, among which there are an emitting component capable of emitting electromagnetic radiation and an inductor sensitive to the incident electromagnetic radiation. At least one shield, external to the chip, is placed opposite the inductor at a distance of less than 500 microns. The shield thus makes it possible to shield the sensitive inductor from the emitting component, while maintaining the quality factor of the inductor.
Abstract:
An interface circuit for transforming a first signal varying between a low voltage and a high voltage into a second signal varying between a lower voltage and a higher voltage, the lower voltage being smaller than the low voltage and/or the higher voltage being greater than the high voltage, comprising: an inverter circuit receiving the first signal and being connected for its supply between said higher voltage and said lower voltage, one at least of these connections being performed via at least one diode, a conversion element supplied between said higher and lower voltages, and receiving the output of the inverter circuit and providing the second signal, a storage element capable of maintaining the output of the inverter circuit at said higher or lower voltage when the first signal is respectively equal to the low or high voltage.