Abstract:
A method for controlling the breakdown of an antifuse memory cell formed on a semiconductor substrate, including the steps of: applying a programming voltage; detecting a breakdown time; and interrupting the application of the programming voltage at a time following the breakdown time by a post-breakdown time.
Abstract:
A chip provided with through vias wherein the vias are formed of an opening with insulated walls coated with a conductive material and filled with an easily deformable insulating material, elements of connection to another chip being arranged in front of the easily deformable insulating material.
Abstract:
The component, fully integrated onto a monolithic substrate, includes a tuner, a demodulator, and a channel decoder. The overall filtering is carried out in two parts, a baseband analog filtering and a digital Nyquist filtering removing the information of adjacent channels. It outputs a stream of MPEG data.
Abstract:
A method for localizing an object, including the acts of: transmission of a first signal by a first transmitter assigned to the object and of a second signal by at least one second transmitter; reception of the first and of the second signal by at least three receivers; in each receiver and for the first and the second signal: a) generation of a first and of a second reference signal; b) correlation between the first signal and the first reference signal and between the second signal and the second reference signal; c) interpolation of samples resulting from the correlation; d) deduction of the propagation time of the first and of the second signal; e) calculation of the difference between the propagation times of the first and of the second signal; and, by triangulation, deduction of the position of the object.
Abstract:
A wireless unit includes a first motion sensitive device; communications circuitry for wirelessly communicating with a further wireless unit; and a processing device configured to compare at least one first motion vector received from the first motion sensitive device with at least one second motion vector received from a second motion sensitive device of the further wireless unit.
Abstract:
A method may include a cycle of reading a current pixel including connecting the capacitive node of the pixel to a capacitive node of a previous pixel already read, connecting the capacitive node of the current pixel and the capacitive node of a previous pixel to an output line, reading a first voltage of the capacitive node of the pixel through the output line, transferring charges from the accumulation node to the capacitive node of the pixel, reading a second voltage of the capacitive node of the pixel through the output line, and disconnecting the capacitive node from the capacitive node of a previous pixel, and a cycle of reading a next pixel. This cycle may include accumulating charges in the accumulation node of the next pixel while the capacitive node of the current pixel is connected to a capacitive node of a previous pixel.
Abstract:
A circuit includes a first n-bit communications block and a second m-bit communications block. A controller is configured to control mode of operation for the first and second communications blocks. In a first mode, the first and second communications blocks function as a single communications block for n+m bit communications. In a second mode, the first and second communications blocks operate as substantially independent communications block for n bit communications and m bit communications.
Abstract:
An embodiment relates to a coplanar waveguide electronic device comprising a substrate whereon is mounted a signal ribbon and at least a ground plane. The signal ribbon comprises a plurality of signal lines of a same level of metallization electrically connected together, and the ground plane is made of an electrically conducting material and comprises a plurality of holes.
Abstract:
A power switch includes first and second MOS transistors in series between first and second nodes. Both the first and second transistors have a gate coupled to its substrate. First and second resistive elements are coupled between the gate of the first transistor and the first node, and between the gate of the second transistor and the second node, respectively. A triac is coupled between the first and second nodes. The gate of the triac is coupled to a third node common to the first and second transistors. A third MOS transistor has a first conduction electrode coupled to the gate of the first transistor and a second conduction electrode coupled to the gate of the second transistor.
Abstract:
Embodiments described in the present disclosure relate to a method for providing power for an integrated system, including acts of: providing the system with power, ground and body bias voltages, the body bias voltages comprising a body bias voltage of p-channel MOS transistors, greater or lower than the supply voltage, and a body bias voltage of n-channel MOS transistors, lower or greater than the ground voltage, selecting by means of the system out of the voltages provided, depending on whether a processing unit of the system is in a period of activity or inactivity, voltages to be supplied to bias the bodies of the MOS transistors of the processing unit, and providing the bodies of the MOS transistors of the processing unit with the voltages selected.