Abstract:
A light source cooling device includes a light source module, an inner casing, an outer casing, and a plurality of spacers. The inner casing encloses an accommodation space for accommodating the light source module. The outer casing surrounds the inner casing and has a gap included between an inner wall of the inner casing and the outer casing, wherein the inner casing and the outer casing are made of materials with different thermal conductivity coefficients. The inner wall of the inner casing, an outer wall of the outer casing, and the spacers together form a plurality of heat-dissipating passages. The inner wall absorbs the heat generated by the light source module and generates a temperature gradient between the inner wall and the outer wall, which assists in creating thermal convection to exhaust the heat.
Abstract:
A light guide device includes N+1 light guide plates and N linear plane splitters. The light guide plates include a light outlet face, a light guiding face and a reflection face. The volume of the light guide device is defined by the light outlet face opposite to the light guiding face. The light guiding face has a plurality of first microstructures for diverting the light. The reflection face extends from the light outlet face toward a splitting portion. The linear plane splitters have a first and a second splitting portion. The first and second splitting portions of the ith linear plane splitter connects the light guiding face and the reflection face of the (j−1)th and jth light guide plates. The i and j satisfy 1≦i≦N and 2≦j≦N+1. Moreover, a light module utilizing the light guide device is disclosed.
Abstract:
A light-emitting device includes a lower housing, a supporting frame, a light-emitting component, and an upper housing. The lower housing has a capacious recess and a pair of first fastening parts. The capacious recess is located between the first fastening parts. The supporting frame is disposed in the capacious recess. The light-emitting component is disposed on the supporting frame. The upper housing has a pair of second fastening parts. The second fastening parts and the first fastening parts are fastened each other, so that the upper housing covering the supporting frame and the light-emitting component is combined with the lower housing.
Abstract:
A wafer-level packaging process of a light-emitting diode is provided. First, a semiconductor stacked layer is formed on a growth substrate. A plurality of barrier patterns and a plurality of reflective layers are then formed on the semiconductor stacked layer, wherein each reflective layer is surrounded by one of the barrier patterns. A first bonding layer is then formed on the semiconductor stacked layer to cover the barrier patterns and the reflective layers. Thereafter, a carrying substrate having a plurality of second bonding layers and a plurality of conductive plugs electrically insulated from each other is provided, and the first bonding layer is bonded with the second bonding layer. The semiconductor stacked layer is then separated from the growth substrate. Next, the semiconductor stacked layer is patterned to form a plurality of semiconductor stacked patterns. Next, each semiconductor stacked pattern is electrically connected to the conductive plug.
Abstract:
A light emitting diode structure and a manufacturing method thereof are disclosed. The structure includes a substrate, an N type semiconductor layer, and active layer, a P type semiconductor layer, a current diffusion layer, and a metal electrode. The metal ions of the P type semiconductor layer may bond with hydrogen after process thermal annealing, and metal hydride may be generated. The metal hydride may be directly formed on the surface of the P type semiconductor layer and may be used as the current blocking layer. Since the metal hydride may be directly formed on the surface of the P type semiconductor layer, its structure is flat, which resolve the problem having the electrodes peeled off from the solder wire.
Abstract:
A lamp tube according to the present invention at least comprises: a tube body, a light-emitting module, a driving module and an electrical connection module. The light-emitting module and the driving module are disposed in the tube body. The light-emitting module is provided with a first circuit board and a plurality of LEDs. The driving module is provided with at least a second circuit board and a drive circuit. The electrical connection module forms an electrical connection between the first and second circuit boards. It is convenient to independently replace or repair the driving module or the light-emitting module without discarding the entire lamp tube so as to effectively save costs and achieve the effects of energy saving and environmental protection.