Abstract:
An electro-hydraulic control apparatus for a motor-vehicle transmission having at least five forward gears and one reverse gear, including first, second and third shift forks, each movable in at least one engagement position to engage a respective gear, first, second and third hydraulic actuators each arranged to control the movement of a respective shift fork in the respective at least one engagement position, and a slide valve selectively movable into one of at least three operating positions in each of which the slide valve selects a respective hydraulic actuator, wherein a first operating position is an end-of-travel position and corresponds to the selection of the first hydraulic actuator, and wherein a second operating position is also an end-of-travel position and corresponds to the selection of the second hydraulic actuator.
Abstract:
An internal-combustion engine with two intake valves for each cylinder is provided with a system for variable actuation of the intake valves, including a single solenoid valve for each cylinder that controls communication of a pressurized-fluid chamber of the system with an exhaust channel. The solenoid valve is a three-way, three-position solenoid valve, including an inlet permanently communicating with the pressurized-fluid chamber and with the hydraulic actuator of an intake valve, and two outlets communicating, respectively, with the actuator of the other intake valve and with the exhaust channel. The solenoid valve has a first position, in which the inlet communicates with both of the outlets, a second position, in which the inlet communicates only with the aforementioned outlet connected to the actuator of an intake valve and does not communicate, instead, with the outlet connected to the exhaust channel, and a third position, in which the inlet does not communicate with any of the two outlets.
Abstract:
The system includes at least one transmission belt operable to couple the drive shafts of auxiliary devices with a pulley operatively connectable to the crankshaft of the internal combustion engine, and a servo controlled clutch operable selectively to control the coupling of the pulley with the crankshaft of the internal combustion engine. Between the pulley and the crankshaft of the engine is interposed an overrun clutch such that when the angular velocity of the crankshaft is greater than and, respectively, less than that of the pulley, the pulley is able to be driven in rotation by the crankshaft and, respectively, becomes freely rotatable with respect to this crankshaft. The servo controlled clutch is normally de energised and disengaged. The system further includes control devices for causing energisation and engagement of the servo controlled clutch and activation of the machine as a motor, whilst the internal combustion engine is not running, in order to restart the motor by means of the electric machine operating as a motor.
Abstract:
A device for determining the position of a movable object (10) along a path of motion, comprising: a coded magnetic element (14) provided with a plurality of coded segments (16), each of which has a unique identification code, and a sensor element (20) so positioned as to recognize the code of the coded sector (16) which is positioned in correspondence with the sensor element (20).
Abstract:
The invention describes a system with a multifunctional integrated visual sensor using a CMOS or CCD technology matrix having a sensitive area divided into sub-areas dedicated to a series of specific functions.
Abstract:
A method of diagnosing a cooling system of a vehicle engine, including the steps of: acquiring operating data relative to operation of the cooling system (cooling system radiator water temperature/fan rotation speed) during a trip time between turn-on of the engine and subsequent turn-off of the engine; processing the acquired data, and accumulating the data for each trip to create a database; and examining the location of the data within the database to determine malfunction and/or potential malfunction situations of the cooling system.
Abstract:
Described herein is a microgenerator of electrical energy with a high power density, which uses an internal-combustion micromotor with two combustion chambers set opposite to one another, within which a piston is displaced with reciprocating motion. The piston is at least in part made of magnetic material and is wound with a coil, within which is generated an electric current by induction. The fuel, the oxidant, and preferably a catalyst, are injected into each of the two combustion chambers by means of injectors that are substantially of the same type as those used in ink-jet printer heads. The dimensions of the device are comparable to those of a 1.5-V NiCd battery of a traditional standard type.
Abstract:
The system makes it possible to control at least one piezoelectric actuator having a capacitive impedance and includes a source of voltage, a control circuit branch in parallel with the source, in which the actuator is connected in series to two electronic switches each having a respective parallel diode; an energy accumulating inductor with one terminal connected between the said switches and the other connected to the voltage source; and an electronic unit operable to control the said controlled switches according to predetermined modes of operation.
Abstract:
Described herein is a fuel-cell stack, which comprises a plurality of direct-alcohol fuel cells electrically connected together. Each cell has a miniaturized structure comprising a first electrode, a second electrode, an electrolyte set between the first electrode and the second electrode, means for conducting electrical current to the first electrode, and means for conducting electrical current to the second electrode. The miniaturized structure of each cell is made up of a plurality of layers set on top of one another, and the various miniaturized structures are associated in an unremovable way to a flexible substrate capable of being wound up in a roll.
Abstract:
The circuit comprises first and second power lines connected to a port of a first actuator chamber and to the port of a second actuator chamber, respectively; a supply line and a discharge line connected to a supply source and to a discharge reservoir; a first sliding member valve capable of connecting the first power line to the supply and discharge lines under the control of pilot pressures transmitted to the first sliding member valve by a first pair of pilot lines; and a second sliding member valve capable of connecting the second power line with the supply and discharge lines under the control of pilot pressures transmitted to the second sliding member valve by a second pair of pilot lines. The one line of the first pair of pilot lines and the one line of the second pair of pilot lines transmit the same first pilot pressure signal; the other line of the first pair of pilot lines and the other line of the second pair of pilot lines transmit the same second pilot pressure signal, whereby the actuator can be controlled by only two pilot pressures.