Abstract:
A ferroelectric transistor gate structure with a ferroelectric gate and passivation sidewalls is provided. The passivation sidewalls serve as an insulator to reduce, or eliminate, the diffusion of oxygen or hydrogen into the ferroelectric gate. A method of forming the ferroelectric gate structure is also provided. The method comprises the steps of forming a sacrificial gate structure, removing the sacrificial gate structure, depositing passivation insulator material, etching the passivation insulator material using anisotropic plasma etching to form passivation sidewalls, depositing a ferroelectric material, polishing the ferroelectric material using CMP, and forming a top electrode overlying the ferroelectric material.
Abstract:
A Pb3GeO5 phase PGO thin film is provided. This film has ferroelastic properties that make it ideal for many microelectromechanical applications or as decoupling capacitors in high speed multichip modules. This PGO film is uniquely formed in a MOCVD process that permits a thin film, less than 1 mm, of material to be deposited. The process mixes Pd and germanium in a solvent. The solution is heated to form a precursor vapor which is decomposed. The method provides deposition temperatures and pressures. The as-deposited film is also annealed to enhanced the film's ferroelastic characteristics. A ferroelastic capacitor made from the present invention PGO film is also provided.
Abstract:
An integrated circuit device, and a method of manufacturing the same, including nickel silicide on a silicon substrate fabricated with an iridium interlayer. In one embodiment the method comprises depositing an iridium (Ir) interface layer between the Ni and Si layers prior to the silicidation reaction. The thermal stability is much improved by adding the thin iridium layer. This is shown by the low junction leakage current of the ultra-shallow junction, and by the low sheet resistance of the silicide, even after annealing at 850° C.
Abstract:
An Ir—M—O composite film has been provided that is useful in forming an electrode of a ferroelectric capacitor, where M includes a variety of refractory metals. The Ir combination film is resistant to high temperature annealing in oxygen environments. When used with an underlying barrier layer made from the same variety of M transition metals, the resulting conductive barrier also suppresses to diffusion of Ir into any underlying Si substrates. As a result, Ir silicide products are not formed, which degrade the electrode interface characteristics. That is, the Ir combination film remains conductive, not peeling or forming hillocks, during high temperature annealing processes, even in oxygen. The Ir—M—O conductive electrode/barrier structures are useful in nonvolatile FeRAM devices, DRAMs, capacitors, pyroelectric infrared sensors, optical displays, optical switches, piezoelectric transducers, and surface acoustic wave devices. A method for forming an Ir—M—O composite film barrier layer and an Ir—M—O composite film ferroelectric electrode are also provided.
Abstract:
The present invention provides a substantially single crystal PGO film with optimal the ferroelectric properties. The PGO film and adjacent electrodes are epitaxially grown to minimize mismatch between the structures. MOCVD deposition methods and RTP annealing procedures permit a PGO film to be epitaxially grown in commercial fabrication processes. These epitaxial ferroelectric have application in FeRAM memory devices. The present invention deposition method epitaxially grows ferroelectric Pb5Ge3O11 thin films along with c-axis orientation.
Abstract:
An electroluminescence (EL) device and a method are provided for fabricating said device with a nanotip electrode. The method comprises: forming a bottom electrode with nanotips; forming a Si phosphor layer adjacent the nanotips; and, forming a transparent top electrode. The Si phosphor layer is interposed between the bottom and top electrodes. The nanotips may have a tip base size of about 50 nanometers, or less, a tip height in the range of 5 to 50 nm, and a nanotip density of greater than 100 nanotips per square micrometer. Typically, the nanotips are formed from iridium oxide (IrOx) nanotips. A MOCVD process forms the Ir bottom electrode. The IrOx nanotips are grown from the Ir. In one aspect, the Si phosphor layer is a SRSO layer. In response to an SRSO annealing step, nanocrystalline SRSO is formed with nanocrystals having a size in the range of 1 to 10 nm.
Abstract:
A nanotip capacitor and associated fabrication method are provided. The method provides a bottom electrode and grows electrically conductive nanotips overlying the bottom electrode. An electrically insulating dielectric is deposited overlying the nanotips, and an electrically conductive top electrode is deposited overlying dielectric-covered nanotips. Typically, the dielectric is deposited by forming a thin layer of dielectric overlying the nanotips using an atomic layer deposition (ALD) process. In one aspect, the electrically insulating dielectric covering the nanotips forms a three-dimensional interface of dielectric-covered nanotips. Then, the electrically conductive top electrode overlying the dielectric-covered nanotips forms a three-dimensional top electrode interface, matching the first three-dimensional interface of the dielectric-covered nanotips.
Abstract:
A method is provided for forming a NanoElectroChemical (NEC) cell. The method provides a bottom electrode with a top surface. Nanowire shells are formed. Each nanowire shell has a nanowire and a sleeve, with the nanowire connected to the bottom electrode top surface. A top electrode is formed overlying the nanowire shells. A main cavity is formed between the top electrode and bottom electrodes, partially displaced by a first plurality of nanowire shells. Electrolyte cavities are formed between the sleeves and nanowires by etching the first sacrificial layer. In one aspect, electrolyte cavities are formed between the bottom electrode top surface and a shell coating layer joining the sleeve bottom openings. Then, the main and electrolyte cavities are filled with either a liquid or gas phase electrolyte. In a different aspect, the first sacrificial layer is a solid phase electrolyte that is not etched away.
Abstract:
A method of fabricating a photovoltaic cell for use in a solar cell structure includes preparing a first substrate; preparing a TiO2 precursor; preparing a cold wall CVD chamber; placing the first substrate in the cold wall CVD chamber; forming a transparent conducting electrode on the first substrate; depositing a porous column TiO2 film on the transparent conducting electrode; depositing a photosensitive material in and on the porous column TiO2 film; forming a top electrode on the photovoltaic cell; and incorporating the photovoltaic cell into a solar cell structure. The method of the invention is suitable for forming photovoltaic cells which may be of the dye-sensitized solar cell (DSSC) type, having a liquid or solid-state electrolyte therein, or an ordered organic-inorganic heterojunction photovoltaic cell.
Abstract:
An ambient environment nanowire sensor and corresponding fabrication method have been provided. The method includes: forming a substrate such as Silicon (Si) or glass; growing nanowires; depositing an insulator layer overlying the nanowires; etching to expose tips of the nanowires; forming a patterned metal electrode, with edges, overlying the tips of the nanowires; and, etching to expose the nanowires underlying the electrode edges. The nanowires can be a material such as IrO2, TiO2, InO, ZnO, SnO2, Sb2O3, or In2O3, to mane just a few examples. The insulator layer can be a spin-on glass (SOG) or low-k dielectric. In one aspect, the resultant structure includes exposed nanowires grown from the doped substrate regions and an insulator core with embedded nanowires. In a different aspect, the method forms a growth promotion layer overlying the substrate. The resultant structure includes exposed nanowires grown from the selectively formed growth promotion layer.