Abstract:
A nonvolatile memory device using a resistance material and a method of fabricating the same are provided. The nonvolatile memory device includes a switching element, and a data storage part electrically connected to the switching element. In the data storage part, a lower electrode is connected to the switching element, and an insulating layer is formed on the lower electrode to a predetermined thickness. The insulating layer has a contact hole exposing the lower electrode. A data storage layer is filled in the contact hole and the data storage layer is formed of transition metal oxide. An upper electrode is formed on the insulating layer and the data storage layer.
Abstract:
Provided are a method for manufacturing a high k-dielectric oxide film, a capacitor having a dielectric film formed using the method, and a method for manufacturing the capacitor. A high k-dielectric oxide film is manufactured by (a) loading a semiconductor substrate in an ALD apparatus, (b) depositing a reaction material having a predetermined composition rate of a first element and a second element on the semiconductor substrate, and (c) forming a first high k-dielectric oxide film having the two elements on the semiconductor substrate by oxidizing the reaction material such that the first element and the second element are simultaneously oxidized. In this method, the size of an apparatus is reduced, productivity is enhanced, and manufacturing costs are lowered. Further, the high k-dielectric oxide film exhibits high dielectric constant and low leakage current and trap density. Thus, a capacitor including the high k-dielectric oxide film as a dielectric film also exhibits low leakage current and trap density.
Abstract:
Disclosed is a solar cell and a method for manufacturing the same, which facilitates to improve cell efficiency by smoothly drifting carrier such as hole or electron generated in a semiconductor wafer to first and second electrodes, the solar cell comprising a semiconductor wafer having a predetermined polarity; a first semiconductor layer on one surface of the semiconductor wafer; a first transparent conductive layer on the first semiconductor layer; a first electrode on the first transparent conductive layer; a second semiconductor layer on the other surface of the semiconductor wafer, wherein the second semiconductor layer is different in polarity from the first semiconductor layer; a second transparent conductive layer on the second semiconductor layer; a second electrode on the second transparent conductive layer; and at least one of first and second auxiliary layers, wherein the first auxiliary layer is formed between the first semiconductor layer and the first transparent conductive layer so as to smoothly drift carriers generated in the semiconductor wafer to the first transparent conductive layer, and the second auxiliary layer is formed between the second semiconductor layer and the second transparent conductive layer so as to smoothly drift carriers generated in the semiconductor wafer to the second transparent conductive layer.
Abstract:
Example embodiments may provide resistive random access memory devices and/or methods of manufacturing resistive random access memory devices. Example embodiment resistive random access memory devices may include a switching device and/or a storage node connected to the switching device. The storage node may include a stack structure including a plurality of resistance change layers separated from one another and first and second electrodes each on a side wall of the stack structure. The resistance change layers may be connected to the first and the second electrodes in parallel and/or may have different switching voltages from each other.
Abstract:
Solar cells and methods of manufacturing the same, the solar cells include a plurality of nanowire heterostructures, wherein each of the plurality of nanowire heterostructures includes a nanowire including at least one p-type nanowire layer and at least one n-type nanowire layer, and a semiconductor material layer disposed on the nanowire. The semiconductor material layer constitutes a p-n junction with the p-type or n-type nanowire layer. The semiconductor material layer includes at least one of the p-type material layer and the n-type material layer.
Abstract:
An apparatus and method for measuring the quality of a signal on an optical disc based on level information of a viterbi decoder are provided. The signal quality measuring apparatus includes: a binary unit that generates binary signals from input RF signals; a channel identifier that receives the input RF signals and the binary signals output from the binary unit and outputs reference level values corresponding to the binary signals; and an information calculator that receives the reference level values and detects a signal quality value.
Abstract:
A solar cell including: a semiconductor substrate including a p-type layer and an n-type layer; a dielectric layer disposed on the semiconductor substrate and including a silicate represented by the following Chemical Formula 1 xM2O3.ySiO2 Chemical Formula 1 wherein M is a Group 13 element and x and y are real numbers wherein 0
Abstract:
Disclosed is a cooling fluid path structure for a superconducting rotating machine, which includes: a fixed inlet fluid path fixed together with the fluid supply means; a rotating inlet fluid path adjacently connected to an outlet of the fixed inlet fluid path, which is for transferring the cooling fluid transferred from the fixed inlet fluid path to a cooling fluid path inlet provided in the rotor while rotating together with the rotor; a rotating outlet fluid path rotating together with the rotor, to which the cooling fluid discharged from a cooling fluid path outlet of the rotor is transferred; and a fixed outlet fluid path adjacently connected to the rotating outlet fluid path, which is for transferring the cooling fluid transferred from the rotating outlet fluid path to the fluid supply means while being fixed together with the fluid supply means, wherein the rotating outlet fluid path and the fixed outlet fluid path are disposed in such a manner that they surround outside of the rotating inlet fluid path and the fixed inlet fluid path.