Abstract:
A structure of a capacitor includes two gates and a commonly used source/drain region on a substrate. Then, a pitted self align contact window (PSACW) partly exposes the commonly used source/drain region. Then an glue/barrier layer and a lower electrode of the capacitor are over the PSACW. Then a dielectric thin film with a material having high dielectric constant is over the lower electrode. Then, an upper electrode is over the dielectric thin film to complete a capacitor, which has a structure of metal insulator metal with a shape like the PSACW.
Abstract:
A semiconductor fabrication method is provided for fabricating a shallow-trench isolation (STI) structure with a rounded corner in integrated circuits through a rapid thermal process (RTP). In the fabrication of the STI structure, a sharp corner is often undesirably formed. This sharp corner , if not eliminated, causes the occurrence of a leakage current when the resultant IC device is in operation that significantly degrades the performance of the resultant IC device. To eliminate this sharp corner , an RTP is performed at a temperature of above 1,100.degree. C., which temperature is higher than the glass transition temperature of the substrate, for about 1 to 2 minutes. The result is that the surface of the substrate is oxidized into an sacrificial oxide layer and the sharp corner is deformed into a rounded shape with a larger convex radius of curvature. This allows the problems arising from the existence of the sharp corner to be substantially eliminated. Compared to the prior art, this method not only is more simplified in process, but also allows a considerable saving in thermal budget, which makes this method more cost-effective to implement than the prior art.
Abstract:
A print cutting machine includes a main body, a moving unit, a cutting unit, a receiving unit, and a workpiece unit. The main body is provided with a receiving space, a first stand, two first slide rails, and two second slide rails. The moving unit is movably mounted on the first stand and includes a second stand, a moving seat, and a fitting seat. The second stand slides on the first stand linearly. The moving seat is moved on the second stand linearly. The fitting seat is mounted on the moving seat. The cutting unit is mounted on the two second slide rails. The receiving unit is received in the receiving space. The workpiece unit is assembled with the moving unit and includes a base, at least one molded portion mounted on the base, and at least one cutout.
Abstract:
The present invention relates to a manufacturing method for a mid-infrared lens, which includes the following steps: placing a lens in the path of a far-infrared radiation source, enabling the lens to receive the far infrared rays; immersing the lens in a hardening liquid, causing the hardening liquid to coat the lens, wherein the hardening liquid is an intermixture of silicone and isopropanol or an intermixture of silicone and methanol, and a far-infrared material or a far-infrared composite material is additionally added to the hardening liquid; placing the lens coated with the hardening liquid in a drying space to dry, causing the hardening liquid to dry and harden and form a hardened layer on the surface of the lens. The temperature of the drying space lies between 80 and 120° C., and the drying time lies between 1 and 10 hours.
Abstract:
A semiconductor structure and methods for forming the same are provided. The semiconductor structure includes a first MOS device of a first conductivity type and a second MOS device of a second conductivity type opposite the first conductivity type. The first MOS device includes a first gate dielectric on a semiconductor substrate; a first metal-containing gate electrode layer over the first gate dielectric; and a silicide layer over the first metal-containing gate electrode layer. The second MOS device includes a second gate dielectric on the semiconductor substrate; a second metal-containing gate electrode layer over the second gate dielectric; and a contact etch stop layer having a portion over the second metal-containing gate electrode layer, wherein a region between the portion of the contact etch stop layer and the second metal-containing gate electrode layer is substantially free from silicon.
Abstract:
The present disclosure provides a semiconductor device that includes a semiconductor substrate and a transistor formed in the substrate. The transistor includes a gate stack having a high-k dielectric and metal gate, a sealing layer formed on sidewalls of the gate stack, the sealing layer having an inner edge and an outer edge, the inner edge interfacing with the sidewall of the gate stack, a spacer formed on the outer edge of the sealing layer, and a source/drain region formed on each side of the gate stack, the source/drain region including a lightly doped source/drain (LDD) region that is aligned with the outer edge of the sealing layer.
Abstract:
A method of fabricating a semiconductor device includes providing a semiconductor substrate having a first active region and a second active region, forming a first metal layer over a high-k dielectric layer, removing at least a portion of the first metal layer in the second active region, forming a second metal layer on first metal layer in the first active region and over the high-k dielectric layer in the second active region, and thereafter, forming a silicon layer over the second metal layer. The method further includes removing the silicon layer from the first gate stack thereby forming a first trench and from the second gate stack thereby forming a second trench, and forming a third metal layer over the second metal layer in the first trench and over the second metal layer in the second trench.
Abstract:
A method of fabricating a semiconductor device includes providing a semiconductor substrate having a first active region and a second active region, forming a first metal layer over a high-k dielectric layer, removing at least a portion of the first metal layer in the second active region, forming a second metal layer on first metal layer in the first active region and over the high-k dielectric layer in the second active region, and thereafter, forming a silicon layer over the second metal layer. The method further includes removing the silicon layer from the first gate stack thereby forming a first trench and from the second gate stack thereby forming a second trench, and forming a third metal layer over the second metal layer in the first trench and over the second metal layer in the second trench.
Abstract:
The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first active region and a second active region, forming a high-k dielectric layer over the semiconductor substrate, forming a first metal layer over the high-k dielectric layer, the first metal layer having a first work function, removing a portion of the first metal layer in the second active region, thereafter, forming a semiconductor layer over the first metal layer in the first active region and over the partially removed first metal layer in the second active region, forming a first gate stack in the first active region and a second gate stack in the second active region, removing the semiconductor layer from the first gate stack and from the second gate stack, and forming a second metal layer on the first metal layer in the first gate stack and on the partially removed first metal layer in the second gate stack, the second metal layer having a second work function.
Abstract:
Provided is a method of semiconductor fabrication including process steps allowing for defining and/or modifying a gate structure height during the fabrication process. The gate structure height may be modified (e.g., decreased) at one or more stages during the fabrication by etching a portion of a polysilicon layer included in the gate structure. The method includes forming a coating layer on the substrate and overlying the gate structure. The coating layer is etched back to expose a portion of the gate structure. The gate structure (e.g., polysilicon) is etched back to decrease the height of the gate structure.