摘要:
The disclosure relates to a dummy gate electrode of a semiconductor device. An embodiment comprises a substrate comprising a first surface; an insulation region covering a portion of the first surface, wherein the top of the insulation region defines a second surface; and a dummy gate electrode over the second surface, wherein the dummy gate electrode comprises a bottom and a base broader than the bottom, wherein a ratio of a width of the bottom to a width of the base is from about 0.5 to about 0.9.
摘要:
An exemplary structure for a gate structure of a field effect transistor comprises a gate electrode; a gate insulator under the gate electrode having footing regions on opposing sides of the gate electrode; and a sealing layer on sidewalls of the gate structure, wherein a thickness of lower portion of the sealing layer overlying the footing regions is less than a thickness of upper portion of the sealing layer on sidewalls of the gate electrode, whereby the field effect transistor made has almost no recess in the substrate surface.
摘要:
Methods of fabricating semiconductor devices with high-k/metal gate features are disclosed. In some instances, methods of fabricating semiconductor devices with high-k/metal gate features are disclosed that prevent or reduce high-k/metal gate contamination of non-high-k/metal gate wafers and production tools. In some embodiments, the method comprises forming an interfacial layer over a semiconductor substrate on a front side of the substrate; forming a high-k dielectric layer and a capping layer over the interfacial layer; forming a metal layer over the high-k and capping layers; forming a polysilicon layer over the metal layer; and forming a dielectric layer over the semiconductor substrate on a back side of the substrate.
摘要:
The disclosure relates to integrated circuit fabrication, and more particularly to an electronic device with an isolation structure having almost no divot. An exemplary method for fabricating an isolation structure, comprising: forming a pad oxide layer over a top surface of a substrate; forming an opening in the pad oxide layer, exposing a portion of the substrate; etching the exposed portion of the substrate, forming a trench in the substrate; filling the trench with an insulator; exposing a surface of the pad oxide layer and a surface of the insulator to a vapor mixture including at least an NH3 and a fluorine-containing compound; and heating the substrate at a temperature between 100° C. to 200° C.
摘要:
The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first active region and a second active region, forming a high-k dielectric layer over the semiconductor substrate, forming a first metal layer over the high-k dielectric layer, the first metal layer having a first work function, removing a portion of the first metal layer in the second active region, thereafter, forming a semiconductor layer over the first metal layer in the first active region and over the partially removed first metal layer in the second active region, forming a first gate stack in the first active region and a second gate stack in the second active region, removing the semiconductor layer from the first gate stack and from the second gate stack, and forming a second metal layer on the first metal layer in the first gate stack and on the partially removed first metal layer in the second gate stack, the second metal layer having a second work function.
摘要:
A method for cleaning an etching chamber is disclosed. The method comprises providing an etching chamber; introducing a first gas comprising an inert gas into the etching chamber for a first period of time; and transporting a first wafer into the etching chamber after the first period of time, wherein the first wafer undergoes an etching process.
摘要:
The present application discloses a method of forming a semiconductor structure. In at least one embodiment, the method includes forming a polysilicon layer over a substrate. A mask layer is formed over the polysilicon layer. The mask layer is patterned to form a patterned mask layer. A polysilicon structure is formed by etching the polysilicon layer using the patterned mask layer as a mask. The polysilicon structure has an upper surface and a lower surface, and the etching of the polysilicon layer is arranged to cause a width of the upper surface of the polysilicon structure greater than that of the lower surface of the polysilicon structure.
摘要:
A method includes providing a first mask pattern over a substrate, forming first spacers adjoining sidewalls of the first mask pattern, removing the first mask pattern, forming second spacers adjoining sidewalls of the first spacers, forming a filling layer over the substrate and between the second spacers, and forming a second mask pattern over the substrate.
摘要:
The present disclosure provides a semiconductor structure. The semiconductor structure includes a semiconductor substrate; and a gate stack disposed on the semiconductor substrate. The gate stack includes a high k dielectric material layer, a capping layer disposed on the high k dielectric material layer, and a metal layer disposed on the capping layer. The capping layer and the high k dielectric material layer have a footing structure.
摘要:
A method of fabricating a semiconductor device includes providing a semiconductor substrate having a first active region and a second active region, forming a first metal layer over a high-k dielectric layer, removing at least a portion of the first metal layer in the second active region, forming a second metal layer on first metal layer in the first active region and over the high-k dielectric layer in the second active region, and thereafter, forming a silicon layer over the second metal layer. The method further includes removing the silicon layer from the first gate stack thereby forming a first trench and from the second gate stack thereby forming a second trench, and forming a third metal layer over the second metal layer in the first trench and over the second metal layer in the second trench.