Abstract:
An engine idling control device includes a secondary air supply device, an intake gauge pressure detecting unit and a secondary air supply control unit. The secondary air supply device is disposed on a bypass intake passage communicating with an intake pipe and bypassing a throttle valve. The intake gauge pressure detecting unit detects an intake gauge pressure on the intake pipe side. The secondary air supply control unit controls the secondary air supply device so as to open and close the bypass intake passage when an engine is in an idling state. The secondary air supply device is controlled to obtain the optional opening value. The secondary air supply control unit controls such that the secondary air supply device increases the opening value when the intake gauge pressure becomes higher than a predetermined low load condition in an idling state.
Abstract:
A hybrid vehicle control apparatus is provided which can improve fuel consumption. There is provided: a cylinder cut-off determination section for determining whether all cylinders should be cut off; a cylinder cut-off cancellation determination section for determining whether cylinder cut-off cancellation conditions have been satisfied; a cylinder cut-off execution section for operating a spool valve when the cylinder cut-off determination section determines that cylinder cut-off is possible; and a cylinder cut-off control section for cutting off the cylinders of the engine based on the operating conditions of the cylinder cut-off determination section, the cylinder cut-off cancellation determination section and the cylinder cut-off execution section. When the voltage of an auxiliary battery, being the drive source of the spool valve, is at or greater than a predetermined voltage, and the oil temperature is within a predetermined range, the cylinder cut-off determination section determines that cylinder cut-off is possible.
Abstract:
In order to prevent an occurrence of dieseling phenomenon, and to prevent engine rotation speed from decreasing during idle operation or the idle operation from being stopped, in step S111, it is determined whether the flag value of an idle stop flag F_IDLSTP is “1” or not. If it is determined that the determination result is “YES”, that is, if it is determined that the internal combustion engine body is stopped, 0% is set to a target purge control valve drive duty value PGCMD (step S105), and 0 is set to the target purge flow rate QPGC (step S106). If it is determined that the determination result is “NO”, that is, when the internal combustion engine body is in operation, PGCMD calculation processing is executed (step S112). While the internal combustion engine body is stopped, execution of purge is stopped, thereby an occurrence of a dieseling phenomenon which is caused because the flow rate of the air flowing into the internal combustion engine body increases and the air is compressed, is prevented, thereby suppressing vibration from occurring in the internal combustion engine body.
Abstract:
The present invention increases the frequency of the LAF sensor deterioration determination in the case that air-fuel ratio control is being carried out while the deterioration of the LAF sensor is being monitored. When the monitor conditions are no longer satisfied during the deterioration determination of the LAF sensor (as shown in (a) and (b) of FIG. 6), the LAF prohibition timer is operated (as shown in (c) of FIG. 6), and switching to a lean burn is prohibited for a predetermined time interval (for example, 7 seconds), and in addition, after the LAF sensor deterioration determination has completed, after passage of a time interval shorter than this predetermined time interval (for example, 2 seconds) (as shown in figures (c) and (d) of FIG. 6), a lean burn is permitted. Thereby, in the case that monitor conditions are no longer satisfied during monitoring, because the lean burn is prohibited, unlike conventional technology, there is no immediate switch to a lean burn, and therefore, the frequency of the deterioration determination of the LAF sensor can be increased.
Abstract:
In vehicle operation under cruise mode, the battery, which is in a low temperature state, is caused to rise in temperature at an early stage, and the assistance amount and the regeneration power generation amount by means of the motor are caused to increase. During vehicle operation in cruise mode, in the case in which one or the other of the battery temperature and the engine water temperature have failed to reach a predetermined temperature, the cruise power generation amount is raised to a predetermined level, and charging of the battery is continued until both the battery temperature and the engine water temperature have reached predetermined temperatures. When a determination has been made that there is no further room in the battery to accept further charge, power generation and assistance is conducted by the motor so as to cancel periodic fluctuations in the drive force of the engine, and vibration damping control is conducted for suppressing vibrations generated by the engine in accordance with the fluctuations in the drive force of the engine.
Abstract:
Disclosed herein is a shift position indicating device for indicating a recommended shift position to a driver of a hybrid vehicle having an engine for driving a drive shaft of the vehicle, a motor for assisting a drive force applied to the drive shaft by electrical energy, and a battery for supplying power to the motor and storing electrical energy output from the motor. The motor having a regenerative function of converting kinetic energy of the drive shaft into electrical energy. According to the shift position indicating device, it is determined whether or not the vehicle is in a high-load running condition, and when the vehicle is in the high-load running condition, the shift-down is recommended.
Abstract:
The engine automatic start stop control apparatus that controls an engine to be automatically stopped or started in response to driving conditions of a vehicle, comprises: a clutch detector for detecting depression of a clutch pedal; an accelerator detector for detecting depression of an accelerator pedal; an automatic stop detector for detecting an automatic stop of the engine; a stop history checker for checking a history of stopping of the vehicle when the automatic stop detector detects the stop of the vehicle; and an automatic start device for terminating the automatic stop of the engine and starting the engine when the automatic stop detector detects the automatic stop, when the clutch detector detects the depression of the clutch pedal, when the stop history checker finds no stop history, and when the accelerator detector detects depression of the accelerator pedal.
Abstract:
A control apparatus of a hybrid vehicle is provided, capable of charging the storage battery, when the residual capacity of the storage battery is decreasing and when a predetermined amount of the initial residual capacity is decreased. The control apparatus of the present invention comprises a initial residual capacity comparison means S058 for comparing the initial capacity of the storage battery with the discharge depth limiting initial lower limit; a lower limit threshold value setting means S060 and an upper limit setting means S061 for setting the lower limit threshold value and the upper limit threshold value for the discharge amount from the initial residual capacity; a motor control changing means S054 for changing the control mode of the motor when the residual capacity of the storage battery reaches the upper limit threshold value; and a mode setting release means S062 for releasing the setting of the motor control mode set by the motor control changing means when the residual capacity of the storage battery reaches the lower limit threshold value; wherein the control apparatus further comprises a initial residual capacity setting means S059 for assigning the lower limit initial residual capacity to the initial residual capacity when it is determined by the initial residual capacity comparison means that the initial residual capacity of the storage battery is lower than the lower limit initial residual capacity.
Abstract:
The present invention relates to a power generation control apparatus for a hybrid vehicle. The hybrid vehicle comprises an engine which outputs a driving force for the hybrid vehicle; a motor which outputs an assistant driving force so as to assist the driving force of the engine; a power storage unit; and a power generation control apparatus which controls the power generation by the motor. The power generation control apparatus comprises a load torque calculation device which calculates the load torque to be applied to an engine of the hybrid vehicle for generating electrical power used in the hybrid vehicle when the engine is idling; a generable torque calculation device which calculates torque generable by the engine when the engine is idling; and a power generation load torque determination device which determines a limiting value of a power generation load torque to be applied to the engine in accordance with the load torque calculated by the load torque calculation device and the generable torque calculated by the generable torque calculation device.
Abstract:
The control system of the present invention is provided for a hybrid vehicle with an engine and a motor, which are power sources, and a power storage unit for storing energy generated by the output from the engine and regenerative energy produced by regeneration of the motor when the vehicle decelerates. Based on monitoring the state of charge of the power storage unit, when the stored energy is discharged so that the remaining charge is decreased from an initial state of charge, which was detected when the vehicle started running, by a predetermined amount, the function of the motor is switched from the discharging of the power storage unit to the charging of the power storage unit.