Abstract:
A method can be used for the production of a coated substrate. The coating contains copper. A copper precursor and a substrate are provided. The copper precursor is a copper(I) complex which contains no fluorine. A copper-containing layer is deposited by means of atomic layer deposition (ALD) at least on partial regions of the substrate surface by using the precursor. Optionally, a reduction step is performed in which a reducing agent acts on the substrate obtained in the layer deposition step. In various embodiments, the precursor is a complex of the formula L2Cu(X∩X) in which L are identical or different σ-donor-π acceptor ligands and/or identical or different σ,π-donor-π acceptor ligands and X∩X is a bidentate ligand which is selected from the group consisting of β-diketonates, β-ketoiminates, β-diiminates, amidinates, carboxylates and thiocarboxylates.
Abstract:
A process for preparing compounds of the general formula (I) by reacting the compound of the general formula (II) where L, L′ are the same or different and are each independently Cl or OH in the presence of a. chlorine compounds Cl-M2R1R2R3, Cl-M3R4R5R6, with the proviso that L and L′ are not both simultaneously OH, or b. hydroxyl compounds HO-M2R1R2R3, HO-M3R4R5R6. The use of compounds of the general formula (I) as markers for liquids and a process for detecting markers in liquids.
Abstract:
A method and an apparatus for forming a structure on a component made of a material composed of silicon oxide, especially of silicate glass, glass ceramic or quartz, wherein in accordance with the process at least a first surface of the component a partial removal of the material by plasma etching takes place and during the plasma etching at least at the surface to be etched a substrate temperature is established which is substantially greater than 90° C. but less than the softening temperature of the material. The apparatus is equipped for this purpose with a heater for generating the substrate temperature.
Abstract:
The use of compounds of the general formula (I) as markers for liquids, methods for detecting markers in liquids, methods for identifying liquids and selected compounds of the general formula (I).
Abstract:
The present invention relates to the use of phenothiazine S-oxides and S,S-dioxides as matrix materials for organic light-emitting diodes, in particular as matrix materials in the light-emitting layer of the organic light-emitting diodes, to organic light-emitting diodes comprising a light-emitting layer which comprises at least one phenothiazine S-oxide or S,S-dioxide as a matrix material and at least one further substance distributed therein as an emitter, to light-emitting layers which comprise at least one phenothiazine S-oxide or S,S-dioxide as a matrix material and at least one substance distributed therein as an emitter, to light-emitting layers which consist of one or more phenothiazine S-oxides or S,S-dioxides as a matrix material and at least one further substance distributed therein as a matrix material, to organic light-emitting diodes which comprise corresponding light-emitting layers, and to devices which comprise corresponding organic light-emitting diodes.
Abstract:
The present invention relates to the use of metallocene complexes of metals of transition group 4 of the Periodic Table as emitter molecules in organic light-emitting diodes (OLEDs), the use of the metallocene complexes as light-emitting layer in OLEDs, a light-emitting layer comprising at least one metallocene complex, an OLED comprising this light-emitting layer and devices comprising an OLED according to the invention.
Abstract:
The invention relates to a microstructure in a preferably electrically conductive substrate (1), more specifically made of doped single crystal silicon, with at least one functional unit (2.1, 2.2) and to a method of fabricating the same. In accordance with the invention, the functional unit (2.1, 2.2) is mechanically and electrically separated from the substrate (1) on all sides by means of isolation gaps (5, 5a) and is connected, on at least one site, to a first structure (4a) of an electrically conductive layer (S) that is electrically isolated from the substrate (1) by way of an isolation layer (3) and that secures the unit into position relative to the substrate (1). For this purpose, the functional unit (2.1, 2.2) is released from the substrate (1) in such a manner that the isolation gaps (5, 5a) are provided on all sides relative to the substrate (1). The electrically conductive layer (S) is applied in such a manner that it is connected through contact fingers (4a) for example to the functional unit (2.1, 2.2) which it secures into position. The method in accordance with the invention permits to substantially facilitate the manufacturing process and to produce a microstructure with but small parasitic capacitances.
Abstract:
What is proposed is a vertical field effect transistor produced from a semiconductor wafer, comprising a residual transistor composed of a source zone, a channel zone and a drain zone, as well as a movable gate structure disposed by means of at least one flexible suspension in front of said channel zone and spaced therefrom, which is characterized by the provision that the movable gate structure consists of the material of said semiconductor wafer. The suspensions of the movable structure preferably present a high ratio of their height to their width, such that the movable gate may preferably move in the wafer plane.
Abstract:
A high precision micromechanical accelerometer comprises a layered structure of five (5) semiconductor wafers insulated from one another by thin oxide layers. The accelerometer is formed by first connecting a coverplate and a baseplate to associated insulating plates. Counter-electrodes, produced by anisotropic etching from the respective insulating plates, are fixed to the coverplate and the baseplate respectively. The counter-electrodes are contactable through the cover or baseplate via contact windows. A central wafer contains a unilaterally linked mass (pendulum) that is also produced by anisotropic etching and which serves as a movable central electrode of a differential capacitor. The layered structure is hermetically sealed by semiconductor fusion bonding. A stepped gradation from the top is formed at a wafer edge region for attaching contact pads to individual wafers to permit electrical contacting of individual wafers. The invention permits fabrication of a .mu.B device characterized by extremely small leakage capacitances and high temperature stability.
Abstract:
A high precision micromechanical accelerometer comprises a layered structure of five (5) semiconductor wafers insulated from one another by thin semiconductor material oxide layers. The accelerometer is formed by first connecting a coverplate and a baseplate to associated insulating plates. Counter-electrodes, produced by anisotropic etching from the respective insulating plates, are fixed to the coverplate and the baseplate respectively. The counter-electrodes are contactable through the cover or baseplate via contact windows. A central wafer contains a unilaterally linked mass (pendulum) that is also produced by anisotropic etching and which serves as a movable central electrode of a differential capacitor. The layered structure is hermetically sealed by semiconductor fusion bonding. A stepped gradation from the top is formed at a wafer edge region for attaching contact pads to individual wafers to permit electrical contacting of individual wafers. The invention permits fabrication of a .mu.B device characterized by extremely small leakage capacitances and high temperature stability.