Abstract:
A tire wheel comprising a disk and a rim for mounting a pneumatic tire joined to the peripheral edge of the disk. The rim has left and right cylindrical bead seats with a hump which protrudes thereon, and left and right annular rim flanges joined to and extending wheel-radially outwardly from the outer side edges of the bead seats. A ring-like thick element extending along the circumferential direction of the wheel is provided on a portion of the bead seat located between the hump and rim flange of the rim located on the inner side of a vehicle when attached thereto.
Abstract:
A tire/wheel assembly in which a run-flat support member 3 is inserted into a cavity of a pneumatic tire 2, the run-flat support member 3 including a circular shell 4 in which the outer circumferential side thereof is used as a support surface and the inner circumferential side thereof is opened to have two leg portions, and an elastic ring 5 supporting the ends of the two leg portions on a rim 1. The circular shell 4 is configured by jointing side edges 7, 7 of at least two shell segments 4a, each having a single convex circumferential surface.
Abstract:
Disclosed are a run-flat tire and a tire/wheel assembly in which the workability of the tire-to-rim fit has been improved while including a core-type run-flat support member. The tire/wheel assembly is formed by coupling a pneumatic tire and a rim of a wheel. In the tire/wheel assembly, the run-flat support member constituted of a circular shell and elastic rings is inserted into a cavity of the pneumatic tire, in which the circular shell has a support surface thereof extended toward the periphery of the tire and leg portions along each side of the support surface, and the elastic rings support the leg portions of the circular shell on the rim. At the same time, a seat portion and an engaging portion are provided for at least one of the elastic rings, in which the leg portion of the circular shell can be settled on the seat portion, and the engaging portion is extended in an outer tire axial direction from the seat portion and sandwiched between a tire bead base and a rim seat.
Abstract:
A traveling device includes a pneumatic tire mounted on a vehicle, an air pressure adjusting device that adjusts air pressure of the pneumatic tire, and an air pressure control device that increases the air pressure to be higher than a recommended inflation pressure when travel speed of the vehicle is not more than a designated speed.
Abstract:
A pneumatic tire includes: one fastener among a pair of mechanical fasteners that are separated into two in a region of a range from a bead tip to the maximum width position of a tire at a tire inner surface; and an electronic circuit device with another fastener that is to be engaged with the one fastener, the electronic circuit device being secured to the tire inner surface by fitting the two fasteners. In the pneumatic tire with such a configuration, even in the case where the electronic circuit device is mounted on the tire inner surface and liquid such as puncture repair liquid is injected in the tire at puncture, there is no possibility of damaging the electronic circuit device due to adhesion of the liquid to the electronic circuit device such as an air pressure sensor.
Abstract:
A pneumatic tire including a resin layer on at least a portion of the tire inside surface, the resin layer being formed from a thermoplastic resin or a thermoplastic elastomer composition in which an elastomer is dispersed in a thermoplastic resin. The pneumatic tire is provided with a fastener including a base material formed from a thermoplastic resin and engaging elements formed on the base material. Additionally, the base material of the fastener is fixed to the resin layer via fusion bonding.
Abstract:
A pneumatic tire that is provided with a first fastener of a separatable pair of mechanical fasteners on a tire inner surface, wherein, even in cases where a desired object is engaged/fixed using only one fastener, the object does not rotate having the fastener as a central axis when the tire is in use. A first fastener of the pair of mechanical fasteners is provided on a tire inner surface, and the mechanical fasteners are provided with a rotation preventing mechanism for preventing the fasteners from mutually rotating when the pair of mechanical fasteners are engaged.
Abstract:
Provided is a tire noise reduction device including an annular noise absorbing member which is made of a porous material, and which is arranged on the inner circumferential surface of a tire. A protective layer made of a thermoplastic elastomer composition obtained by dispersing an elastomer in a thermoplastic resin is arranged on the outer circumferential surface of the annular noise absorbing member.
Abstract:
A pneumatic tire including: a cylindrical annular structure; a rubber layer, which will become a tread portion, provided along a circumferential direction of the annular structure on an outer side of the annular structure; a carcass portion provided on at least both sides in a width direction of the cylindrical structure including the annular structure and the rubber layer; and an extending portion that extends from both sides in the width direction of the annular structure farther outward in the width direction than a ground contact edge on the outer side in the width direction of the tread portion, and that is provided in plurality on both sides in the width direction along the circumferential direction of the annular structure.
Abstract:
A pneumatic tire includes: an annular structure that is cylindrical and metal where at least an outer side surface in the radial direction is a rough surface; a tread rubber layer that will become a tread portion provided along a circumferential direction of the annular structure on an outer side of the annular structure; and a carcass portion including fibers covered with rubber, provided on at least both sides in a direction parallel to a center axis of the cylindrical structure including the annular structure and the tread rubber layer.