Abstract:
An array substrate and a manufacturing method thereof, and a display device are provided. The array substrate includes: a first electrode, a second electrode and a light-emitting functional layer located between the first electrode and the second electrode. The light-emitting functional layer at least includes an organic light-emitting material layer of a first color and an organic light-emitting material layer of a second color, a color decay rate of the organic light-emitting material layer of the first color being greater than a color decay rate of the organic light-emitting material layer of the second color. The organic light-emitting material layer of the first color at least includes a first sub-layer and a second sub-layer arranged in a stacking manner, and a third electrode is disposed between the first sub-layer and the second sub-layer.
Abstract:
An OLED display device and fabrication method thereof, a display panel and a display device are provided, and the method includes: providing a substrate having an anode layer and a hole injection layer; providing a first molding substrate and a second molding substrate, with a first cavity block being formed on the first molding substrate and a second cavity block being formed on the second molding substrate by a micro mechanical electro system technology, wherein the first cavity block is configured for preparing a hole transport layer corresponding to a sub-pixel of the pixel unit, and the second cavity block is configured for preparing an organic light emitting layer corresponding to a sub-pixel of the pixel unit; filling the first cavity block with a solution of a hole transport material (13) by soaking technology, solidifying to obtain a hole transport layer, and filling the second cavity block with a solution of an organic light emitting material by soaking technology, solidifying to obtain an organic light emitting layer; transferring the hole transport layer in the first cavity block and the organic light emitting layer in the second cavity block to the substrate sequentially through a transfer carrier; after the above operations, forming an electron transport layer, an electron injection layer and a cathode layer on the substrate.
Abstract:
The present invention provides a touch element and a manufacturing method thereof, and a touch screen. The touch element includes a substrate and a touch layer arranged on the substrate, the touch layer is made of a doped carbon nanotube material, and the doped carbon nanotube material is formed by doping and modifying a carbon nanotube material with a strong oxidizing material. The touch element has higher conductivity and lower sheet resistance, which makes the touch element have a good touch performance, thus making a touch product with the touch element achieve the same touch performance while reducing the cost of the touch product; at the same time, the touch layer made of the doped carbon nanotube material has good characteristics of bending resistance, scratch resistance and knocking resistance, so that the touch element can be well applied to the touch of a flexible display product.
Abstract:
The present invention provides a method and an apparatus for forming an oriented nanowire material as well as a method for forming a conductive structure, which can be used to solve the problem of imperfect process for forming oriented nanowire material in prior art. The method for forming an oriented nanowire material of the present invention comprises: forming a liquid film in a closed frame by a dispersion containing nanowires; expanding the closed frame in a first direction so that the liquid film expands in the first direction along with the closed frame; contracting the closed frame in the first direction so that the liquid film contracts in the first direction along with the closed frame; transferring the contracted liquid film to a substrate; and curing the liquid film to form an oriented nanowire material on the substrate.
Abstract:
A mobile communication terminal comprises an acoustic-electro conversion unit configured to convert sound into electric energy, which includes a conversion device for converting vibration into electric energy; and an energy storage unit electrically connected to the conversion device and configured to store electric energy generated by the conversion device. The mobile communication terminal can solve the problem that the mobile communication terminal has large power consumption and short continuous service time, and can make full use of energy, has a long continuous service time and is convenient to use.
Abstract:
A red photoresist composition capable of emitting infrared light, a method of preparing the red photoresist composition capable of emitting infrared light, a color filter comprising red sub-pixels formed from the red photoresist composition capable of emitting infrared light, and a display device including the color filter. The red photoresist composition capable of emitting infrared light comprises, based on the total weight of the composition, 2% to 20% of a color mixed material, 30% to 90% of a solvent, 2% to 20% of an alkali-soluble resin, 2% to 20% of an ethenoid unsaturated monomer, 0.01% to 1% of photoinitiator, and 0.005% to 0.02% of other additives; wherein the color mixed material includes a colorant and a surface-modified infrared light-emitting material at a weight ratio of 99.95:0.05 to 1:1.
Abstract:
A functional material and a preparation method thereof, a curable resin composition, a film and a display device are provided. The functional material comprises inorganic powder provided with modifying layer on the surface, the inorganic powder comprising any one or more selected from the group consisting of aluminum oxide, magnesium oxide, zinc oxide, zirconium oxide, silicon dioxide, titanium dioxide, boron oxide, iron sesquioxide, calcium oxide, potassium oxide, sodium oxide, lithium oxide; and the modifying layer being formed by the reaction of a dianhydride and a diamine. The curable resin composition of the present invention contains the above functional material. The film and display device comprise a transparent film layer formed by the curing of the above-mentioned curable resin composition.
Abstract:
An automatic call synchronization system and method, in which a mobile terminal (101) transmits, when receiving an incoming calling signal and determining that an automatic call synchronization function is turn on, to a wireless signal transponder (104) a call synchronization request carrying the identification information of the mobile terminal (101) and the call information; the pattern recognizer (103), which is connected with the wireless signal transponder (104), authenticates the mobile terminal (101) according to the identification information of the mobile terminal (101), and transmits to a fixed terminal (102) a call access request carrying the identification information of the mobile terminal (101) and the call information through the wireless signal transponder (104) after the authentication is successful; the fixed terminal (102) calls the user of the mobile terminal (101) according to the identification information and the call information, and transmits, when the call is answered by the user using the fixed terminal (102), to the wireless signal transponder (104) a call access response and implements the conversation through a fixed phone operation network matched with the fixed terminal (102). In this way, the call charge may be saved, and automatically performing the call synchronization has flexibility and convenience, thus bringing convenience to the user.
Abstract:
The present disclosure relates to a flexible electrode and a method for manufacturing the same, an electronic skin and a flexible display device, the conductive polymer is solution treated by the ionic liquid, the nano-metal material is added to the solution treated conductive polymer to form the dispersed liquid of the conductive polymer containing the nano-metal material, the dispersed liquid is transferred to the substrate for curing to obtain the flexible electrode. The flexible electrode makes use of the flexible to property of the conductive polymer such that the formed flexible electrode has good ductility and resilience. And the nano-metal material is dispersed in the conductive polymer such that the nano-metal material remedies the defect of low conductive property of the conductive polymeric material, and the flexible electrode has good conductivity.
Abstract:
A multi-sided display, which comprises a first display panel (01) and a second display panel. Two opposite edges of the first display panel and the second display panel are respectively bent towards reverse sides of display areas thereof to form a U-shaped structure. The two edges of the first display panel bent towards the display area thereof are respectively encapsulated with the two edges of the second display panel bent towards the display area to form a closed structure. A display surface of the multi-sided display is an outer surface of the closed structure. Compared with a multi-sided display formed by a plurality of planar display panels, which has a plurality of edges and corners, the multi-sided display can enhance the continuity of images displayed in various directions.