Abstract:
A method of forming a silicon-on-insulator semiconductor device including providing a substrate and forming a trench in the substrate, wherein the trench includes opposing side walls extending upwardly from a base of the trench. The method also includes depositing at least two insulating layers into the trench to form a shallow trench isolation structure, wherein an innermost of the insulating layers substantially conforms to the base and the two side walls of the trench and an outermost of the insulating layers spans the side walls of the trench so that a gap is formed between the insulating layers in the trench. The gap creates compressive forces within the shallow trench isolation structure, which in turn creates tensile stress within the surrounding substrate to enhance mobility of the device.
Abstract:
A semiconductor device includes a fin and a layer formed on at least a portion of the fin. The fin includes a first crystalline material. The layer includes a second crystalline material, where the first crystalline material has a larger lattice constant than the second crystalline material to induce tensile strain within the layer.
Abstract:
For fabricating a field effect transistor on an active device area of a semiconductor substrate, a gate dielectric and a gate electrode are formed on the active device area of the semiconductor substrate. Antimony (Sb) dopant is implanted into exposed regions of the active device area of the semiconductor substrate to form at least one of drain and source extension junctions and/or drain and source contact junctions. A low temperature thermal anneal process at a temperature less than about 950° Celsius is performed for activating the antimony (Sb) dopant within the drain and source extension junctions and/or drain and source contact junctions. In one embodiment of the present invention, the drain and source contact junctions are formed and thermally annealed before the formation of the drain and source extension junctions in a disposable spacer process for further minimizing heating of the drain and source extension junctions. In another embodiment of the present invention, the drain and source extension junctions and/or the drain and source contact junctions are formed to be amorphous before the thermal anneal process. In that case, a SPE (solid phase epitaxy) activation process in performed for activating the antimony (Sb) dopant within the amorphous drain and source extension junctions and/or the amorphous drain and source contact junctions at a temperature less than about 650° Celsius.
Abstract:
A method of forming multiple fins in a semiconductor device includes forming a structure having an upper surface and side surfaces on the semiconductor device. The semiconductor device includes a conductive layer located below the structure. The method also includes forming spacers adjacent the structure and selectively etching the spacers and the conductive layer to form the fins. The fins may be used in a FinFET device.
Abstract:
A method forming a tri-gate fin field effect transistor includes forming an oxide layer over a silicon-on-insulator wafer comprising a silicon layer, and etching the silicon and oxide layers using a rectangular mask to form a mesa. The method further includes etching a portion of the mesa using a second mask to form a fin, forming a gate dielectric layer over the fin, and forming a tri-gate over the fin and the gate dielectric layer.
Abstract:
A method of forming fins for a double-gate fin field effect transistor (FinFET) includes forming a second layer of semi-conducting material over a first layer of semi-conducting material and forming double caps in the second layer of semi-conducting material. The method further includes forming spacers adjacent sides of each of the double caps and forming double fins in the first layer of semi-conducting material beneath the double caps. The method also includes thinning the double fins to produce narrow double fins.
Abstract:
The invention provides an improved well structure for electrically separating n-channel and p-channel MOSFETs. The invention first forms a shallow well in a substrate. A buried amorphous layer is then formed below the shallow well. A deep well is then formed below the buried amorphous layer. The substrate is then subjected to a rapid thermal anneal to recrystallize the buried amorphous layer. The well structure is formed by the shallow well and the deep well. A conventional semiconductor device may then be formed above the well structure. The buried amorphous layer suppresses the channeling effect during the forming of the deep well without requiring a tilt angle.
Abstract:
A method facilitates the doping of fins of a semiconductor device that includes a substrate. The method includes forming fin structures on the substrate, where each of the fin structures includes a cap formed on a fin. The method further includes performing a first tilt angle implant process to dope a first one of the fins with n-type impurities and performing a second tilt angle implant process to dope a second one of the fins with p-type impurities.
Abstract:
In many packetized communication networks, it is not feasible to obtain exact counts of traffic (OD counts) between specific origin-destination node pairs, because the link counts that are readily obtainable at router interfaces are aggregated indiscriminately over OD pairs. The best that can be done is to make a probabilistic inference concerning the OD counts from the observed link counts. Such an inference relies upon a known linear relationship between observed link counts and unknown OD counts, and a statistical model describing how the values of the OD and link counts are probabilistically distributed. Disclosed is an improved method for making such inferences. The disclosed method takes explicit account of past data when forming a current estimate of the OD counts. As a consequence, behavior that evolves in time is described with improved accuracy and smoothness.
Abstract:
A method of forming fins for a double-gate fin field effect transistor (FinFET) includes forming a second layer of semi-conducting material over a first layer of semi-conducting material and forming double caps in the second layer of semi-conducting material. The method further includes forming spacers adjacent sides of each of the double caps and forming double fins in the first semi-conducting material beneath the double caps. The method also includes thinning the double fins to produce narrow double fins.