Abstract:
A demultiplexer includes a voltage boost circuit and at least one data selection output circuit. The voltage boost circuit is coupled to N second-stage selection signal input terminals and N first-stage selection signal input terminals, N is greater than or equal to 2, and N is a positive integer. Each data selection output circuit is coupled to a data input terminal, N data output terminals and the N first-stage selection signal input terminals.
Abstract:
The present disclosure is related to a memory-in-pixel circuit. The memory-in-pixel circuit comprises a switch sub-circuit, and a data input sub-circuit. The data input sub-circuit comprises a first floating gate transistor and a second floating gate transistor. The data input sub-circuit is configured to transmit a data signal from one of a plurality of data lines to a pixel electrode under control of the switch sub-circuit.
Abstract:
The present disclosure relates to an array substrate gate driving unit and an apparatus thereof, a driving method and a display apparatus. The array substrate gate driving unit includes: an input circuit, connected with an input signal terminal and a pull-up node PU; a pull-down circuit, connected with a first voltage signal terminal and the pull-up node PU; a pull-down control circuit, connected with the pull-down circuit via a pull-down node PD; an output circuit, connected with a clock signal terminal CLK, a second voltage signal terminal and a control circuit; a reset circuit, connected with a reset signal terminal Reset, the first voltage signal terminal and the pull-up node PU; and the control circuit, connected with the pull-up node PU and the output circuit.
Abstract:
The present disclosure provides a pixel driving circuit and a method for driving the same, a pixel unit, and a display panel. The pixel circuit includes: a driving sub-circuit, configured to generate driving current based on a data signal and a first voltage; a first light-emitting control sub-circuit configured to receive a first control signal and the first voltage, and provide the first voltage to the driving sub-circuit under control of the first control signal; a second light-emitting control sub-circuit configured to receive a second control signal and provide driving current generated by the driving sub-circuit to an output terminal of the pixel driving circuit under control of the second control signal; a driving control sub-circuit configured to receive the second control signal and the data signal and provide the data signal to the driving sub-circuit under control of the second control signal; and a reset sub-circuit configured to receive a reset signal and a second voltage, and reset the driving sub-circuit using the second voltage under control of the reset signal.
Abstract:
The present disclosure is related to a memory-in-pixel circuit. The memory-in-pixel circuit comprises a switch sub-circuit, and a data input sub-circuit. The data input sub-circuit comprises a first floating gate transistor and a second floating gate transistor. The data input sub-circuit is configured to transmit a data signal from one of a plurality of data lines to a pixel electrode under control of the switch sub-circuit.
Abstract:
An array substrate, a display panel, a display device and a driving method. The array substrate includes: a plurality of first pixel units arranged in an array in a first region; a first gate driving circuit a second gate driving circuit; a plurality of first gate lines connected with the first gate driving circuit; and a plurality of second gate lines connected with the second gate driving circuit. A first portion of the plurality of first pixel units is connected with the plurality of first gate lines, and each first pixel unit in the first portion is connected with one of the plurality of first gate lines; and a second portion of the plurality of first pixel units is connected with the plurality of second gate lines, and each first pixel unit in the second portion is connected with one of the plurality of second gate lines.
Abstract:
A GOA signal determining circuit and method thereof, gate driver circuit, and display device are provided. The GOA signal determining circuit is connected to an input end of a GOA unit, at least two clock signal ends of the GOA unit, and a control end of a reset unit of a PU node in the GOA unit. The GOA signal determining circuit detects a signal of the input end of the GOA unit and a signal of the at least two clock signal ends of the GOA unit, and outputs a control signal to the reset unit of the PU node to control the reset unit to output a reset signal to the PU node to turn off an output transistor of the GOA unit, upon determining both of the signal of the input end and the signal of the at least two clock signal ends are abnormal.
Abstract:
The present application discloses a method of driving a gate driving circuit in an operation cycle divided into a first sub-cycle and a second sub-cycle, including providing a gate driving circuit having a first plurality of shift register units with a second plurality of shift register units, the first plurality of shift register units being configured so that each odd/even numbered shift register unit includes a first bias-control terminal to receive a first/second bias signal CLK1/CLK2, a second bias-control terminal to receive a second/first bias signal CLK2/CLK1, and a first control level terminal provided with a first control voltage VC1, the second plurality of shift register units being configured so that each odd/even numbered shift register unit includes a third bias-control terminal to receive a third/fourth bias signal CLK3/CLK4, a fourth bias-control terminal to receive a fourth/third bias signal CLK4/CLK3, and a second control level terminal provided with a second control voltage VC2; configuring the first bias signal CLK1 and the second bias signal CLK2 as first pair of clock signals at respective turn-on level and turn-off level with inverted phase in the first sub-cycle; setting the first control voltage VC1 to a turn-off level so that the first plurality of shift register units is controlled along with the first pair of clock signals to respectively output corresponding gate driving output signals in an output phase within the first sub-cycle; setting both the third bias signal CLK3 and the fourth bias signal CLK4 to a turn-off level and the second control voltage VC2 to turn-on level during the first sub-cycle; configuring the third bias signal CLK3 and the fourth bias signal CLK4 as second pair of clock signals at respective turn-on level and turn-off level with inverted phase in the second sub-cycle; setting the second control voltage VC2 to a turn-off level so that the second plurality of shift register units are controlled along with the second pair of clock signals to respectively output corresponding gate driving output signals in an output phase within the second sub-cycle; and setting the first bias signal CLK1 and the second bias signal CLK2 to a turn-off level and the second control voltage VC1 to a turn-on level during the second sub-cycle.
Abstract:
A shift register is disclosed including an input module, an output module, a first reset module, a first pull-down module and a second pull-down module. The first pull-down module is configured to supply a reference signal to a first node and an output terminal in response to an active level of a first control signal. The second pull-down module is configured to supply the reference signal to the first node and the output terminal in response to an active level of a second control signal. The active levels of the first control signal and the second control signal occur alternately. Also disclosed are a gate driver circuit and a display apparatus.
Abstract:
A shift register unit and a driving method and a display apparatus can realize outputting of two gate line signals in one shift register unit, which is convenient to a circuit integration design of products and also facilitates an implementation of a narrow bezel product. The shift register unit comprises a first input module, a second input module, a first gate line driving signal module, a second gate line driving signal module, a pulling-down module and a resetting module.