摘要:
The present invention provides a SiGe-based bulk integration scheme for generating FinFET devices on a bulk Si substrate in which a simple etch, mask, ion implant set of sequences have been added to accomplish good junction isolation while maintaining the low capacitance benefits of FinFETs. The method of the present invention includes providing a structure including a bottom Si layer and a patterned stack comprising a SiGe layer and a top Si layer on the bottom Si layer; forming a well region and isolation regions via implantation within the bottom Si layer; forming an undercut region beneath the top Si layer by etching back the SiGe layer; and filling the undercut with a dielectric to provide device isolation, wherein the dielectric has an outer vertical edge that is aligned to an outer vertical edge of the top Si layer.
摘要:
A semiconductor structure and method for forming the same. The structure includes multiple fin regions disposed between first and second source/drain (S/D) regions. The structure further includes multiple front gates and back gates, each of which is sandwiched between two adjacent fin regions such that the front gates and back gates are alternating (i.e., one front gate then one back gate and then one front gate, and so on). The widths of the front gates are greater than the widths of the back gates. The capacitances of between the front gates and the S/D regions are smaller than the capacitances of between the back gates and the S/D regions. The distances between the front gates and the S/D regions are greater than the distances between the back gates and the S/D regions.
摘要:
A field effect transistor (FET) has underlap regions adjacent to the channel doping region. The underlap regions have very low dopant concentrations of less than 1×1017/cc or 5×1016/cc and so tend to have a high resistance. The underlap regions reduce overlap capacitance and thereby increase switching speed. High resistance of the underlap regions is not problematic at subthreshold voltages because the channel doping region also has a high resistance at subthreshold voltages. Consequently, the present FET has low capacitance and high speed and is particularly well suited for operation in the subthreshold regime.
摘要:
Disclosed is an integrated circuit structure that has a substrate having at least two types of crystalline orientations. First-type transistors (e.g., NFETs) are formed on first portions of the substrate having a first type of crystalline orientation, and second-type transistors (e.g., PFETs) are formed on second portions of the substrate having a second type of crystalline orientation. Some of the first portions of the substrate comprise non-floating substrate portions, and the remaining ones of the first portions and all of the second portions of the substrate comprise floating substrate portions.
摘要:
A FinFET structure and method of forming a FinFET device. The method includes: (a) providing a semiconductor substrate, (b) forming a dielectric layer on a top surface of the substrate; (c) forming a silicon fin on a top surface of the dielectric layer; (d) forming a protective layer on at least one sidewall of the fin; and (e) removing the protective layer from the at least one sidewall in a channel region of the fin. In a second embodiment, the protective layer is converted to a protective spacer.
摘要:
A planar substrate device integrated with fin field effect transistors (FinFETs) and a method of manufacture comprises a silicon-on-insulator (SOI) wafer comprising a substrate; a buried insulator layer over the substrate; and a semiconductor layer over the buried insulator layer. The structure further comprises a FinFET over the buried insulator layer and a field effect transistor (FET) integrated in the substrate, wherein the FET gate is planar to the FinFET gate. The structure further comprises retrograde well regions configured in the substrate. In one embodiment, the structure further comprises a shallow trench isolation region configured in the substrate.
摘要:
FinFET end-implanted-semiconductor structures and methods of manufacture are disclosed herein. The method includes forming at least one mandrel on a silicon layer of a substrate comprising an underlying insulator layer. The method further includes etching the silicon layer to form at least one silicon island under the at least one mandrel. The method further includes ion-implanting sidewalls of the at least one silicon island to form doped regions on the sidewalls. The method further includes forming a dielectric layer on the substrate, a top surface of which is planarized to be coplanar with a top surface of the at least one mandrel. The method further includes removing the at least one mandrel to form an opening in the dielectric layer. The method further includes etching the at least one silicon island to form at least one fin island having doped source and drain regions.
摘要:
Embodiments of the invention provide an integrated circuit for an embedded dynamic random access memory (eDRAM), a semiconductor-on-insulator (SOI) wafer in which such an integrated circuit may be formed, and a method of forming an eDRAM in such an SOI wafer. One embodiment of the invention provides an integrated circuit for an embedded dynamic random access memory (eDRAM) comprising: a semiconductor-on-insulator (SOI) wafer including: an n-type substrate; an insulator layer atop the n-type substrate; and an active semiconductor layer atop the insulator layer; a plurality of deep trenches, each extending from a surface of the active semiconductor layer into the n-type substrate; a dielectric liner along a surface of each of the plurality of deep trenches; and an n-type conductor within each of the plurality of deep trenches, the dielectric liner separating the n-type conductor from the n-type substrate; wherein the n-type substrate, the dielectric liner, and the n-type conductor form a buried plate, a node dielectric, and a node plate, respectively, of a cell capacitor.
摘要:
Gate structures and methods of manufacturing is disclosed. The method includes forming a continuous replacement gate structure within a trench formed in dielectric material. The method further includes segmenting the continuous replacement gate structure into separate replacement gate structures. The method further includes forming insulator material between the separate replacement gate structures.
摘要:
A fin field effect transistor (FinFET) structure and method of making the FinFET including a silicon fin that includes a channel region and source/drain (S/D) regions, formed on each end of the channel region, where an entire bottom surface of the channel region contacts a top surface of a lower insulator and bottom surfaces of the S/D regions contact first portions of top surfaces of a lower silicon germanium (SiGe) layer. The FinFET structure also includes extrinsic S/D regions that contact a top surface and both side surfaces of each of the S/D regions and second portions of top surfaces of the lower SiGe layer. The FinFET structure further includes a replacement gate or gate stack that contacts a conformal dielectric, formed over a top surface and both side surfaces of the channel region.