Abstract:
Methods for the conditioning of bioprosthetic material employ bovine pericardial membrane. A laser directed at the fibrous surface of the membrane and moved relative thereto reduces the thickness of the membrane to a specific uniform thickness and smoothes the surface. The wavelength, power and pulse rate of the laser are selected which will smooth the fibrous surface as well as ablate the surface to the appropriate thickness. Alternatively, a dermatome is used to remove a layer of material from the fibrous surface of the membrane. Thinning may also employ compression. Stepwise compression with cross-linking to stabilize the membrane is used to avoid damaging the membrane through inelastic compression. Rather, the membrane is bound in the elastic compressed state through addition cross-linking. The foregoing several thinning techniques may be employed together to achieve strong thin membranes.
Abstract:
Methods for the conditioning of bioprosthetic material employ bovine pericardial membrane. A laser directed at the fibrous surface of the membrane and moved relative thereto reduces the thickness of the membrane to a specific uniform thickness and smoothes the surface. The wavelength, power and pulse rate of the laser are selected which will smooth the fibrous surface as well as ablate the surface to the appropriate thickness. Alternatively, a dermatome is used to remove a layer of material from the fibrous surface of the membrane. Thinning may also employ compression. Stepwise compression with cross-linking to stabilize the membrane is used to avoid damaging the membrane through inelastic compression. Rather, the membrane is bound in the elastic compressed state through addition cross-linking. The foregoing several thinning techniques may be employed together to achieve strong thin membranes.
Abstract:
A valved conduit including a bioprosthetic valve, such as a heart valve, and a tubular conduit sealed with a bioresorbable material. The bioprosthetic heart valve includes prosthetic tissue that has been treated such that the tissue may be stored dry for extended periods without degradation of functionality of the valve. The bioprosthetic heart valve may have separate bovine pericardial leaflets or a whole porcine valve. The sealed conduit includes a tubular matrix impregnated with a bioresorbable medium such as gelatin or collagen. The valved conduit is stored dry in packaging in which a desiccant pouch is supplied having a capacity for absorbing moisture within the packaging limited to avoid drying the bioprosthetic tissue out beyond a point where its ability to function in the bioprosthetic heart valve is compromised. The heart valve may be sewn within the sealed conduit or coupled thereto with a snap-fit connection.
Abstract:
Methods of deploying knotless suture locking clamps for securing prostheses such as heart valves or annuloplasty rings to facilitate implantation. The clamps have opposed clamp halves separated by a slot opening to one side and surrounded by a biasing member such as one or more C-clip springs. Sutures pass laterally into the slot which is held open by a retention member positioned between the clamp halves. The locking clamp slides along the sutures into position, the tension of the sutures is adjusted, and the retention member removed to allow the biasing member to clamp the sutures between the clamp halves. A delivery tool used to deliver and deploy the locking clamps contains a number of clamps within a delivery tube in a stack and bonded together for safety and a common retention member. The tool has a longitudinal channel on one side for entry of sutures.
Abstract:
A heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The prosthetic valve has a base stent that is deployed at a treatment site, and a valve component configured to quickly connect to the base stent. The base stent may take the form of a self- or balloon-expandable stent that expands outward against the native valve with or without leaflet excision. The valve component has a non-expandable prosthetic valve and a self- or balloon-expandable coupling stent for attachment to the base stent, thereby fixing the position of the valve component relative to the base stent. The prosthetic valve may be a commercially available to valve with a sewing ring and the coupling stent attaches to the sewing ring. The system is particularly suited for rapid deployment of heart valves in a conventional open-heart surgical environment. A catheter-based system and method for deployment is provided.
Abstract:
A quick-connect heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The heart valve includes a substantially non-expandable, non-compressible prosthetic valve and a plastically-expandable coupling stent, thereby enabling attachment to the annulus without sutures. A small number of guide sutures may be provided for aortic valve orientation. The prosthetic valve may be a commercially available valve with a sewing ring with the coupling stent attached thereto. The coupling stent may expand from a conical deployment shape to a conical expanded shape, and may include web-like struts connected between axially-extending posts. A system and method for deployment includes a hollow two-piece handle through which a balloon catheter passes. A valve holder is stored with the heart valve and the handle easily attaches thereto to improve valve preparation steps.
Abstract:
Disclosed herein is a prosthetic heart valve, and associated methods therefore, configured to replace a native heart valve, and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein. The prosthetic heart valve is configured to have an expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
Abstract:
A heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The prosthetic valve has a base stent that is deployed at a treatment site, and a valve component configured to quickly connect to the base stent. The base stent may take the form of a self- or balloon-expandable stent that expands outward against the native valve with or without leaflet excision. The valve component has a non-expandable prosthetic valve and a self- or balloon-expandable coupling stent for attachment to the base stent, thereby fixing the position of the valve component relative to the base stent. The prosthetic valve may be a commercially available valve with a sewing ring and the coupling stent attaches to the sewing ring. The system is particularly suited for rapid deployment of heart valves in a conventional open-heart surgical environment.
Abstract:
A hybrid heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The hybrid heart valve includes a substantially non-expandable, non-compressible prosthetic valve member having a peripheral sealing ring and an expandable stent frame projecting from an inflow end, thereby enabling attachment to the annulus without sutures. The stent frame may be plastically-expandable and may have a thin fabric layer covering its entirety as well as secondary sealing structures around its periphery to prevent paravalvular leaking. Other sealing solutions include interactive steps at the time of valve implant to establish seals around the stent and especially between the stent and the sealing ring of the valve member.
Abstract:
A hybrid heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The hybrid heart valve includes a substantially non-expandable, non-compressible prosthetic valve member having a peripheral sealing ring and an expandable stent frame projecting from an inflow end, thereby enabling attachment to the annulus without sutures. The stent frame may be plastically-expandable and may have a thin fabric layer covering its entirety as well as secondary sealing structures around its periphery to prevent paravalvular leaking. Other sealing solutions include interactive steps at the time of valve implant to establish seals around the stent and especially between the stent and the sealing ring of the valve member.