Abstract:
Aspects of the present invention generally relate to approaches for forming a semiconductor device such as a TSV device having a “buffer zone” or gap layer between the TSV and transistor(s). The gap layer is typically filled with a low stress thin film fill material that controls stresses and crack formation on the devices. Further, the gap layer ensures a certain spatial distance between TSVs and transistors to reduce the adverse effects of temperature excursion.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to a cap structure and methods of manufacture. The structure includes: a gate structure composed of conductive gate material; sidewall spacers on the gate structure, extending above the conductive gate material; and a capping material on the conductive gate material and extending over the sidewall spacers on the gate structure.
Abstract:
A method of fabricating interconnects in a semiconductor device is provided, which includes forming an interconnect layer having a conductive line and depositing a first aluminum-containing layer over the interconnect layer. A dielectric layer is deposited over the first aluminum-containing layer, followed by a second aluminum-containing layer deposited over the dielectric layer. A via opening is formed in the second aluminum-containing layer through to the conductive line, wherein the via opening has chamferless sidewalls.
Abstract:
The present disclosure relates to methods for forming fill materials in trenches having different widths and related structures. A method may include: forming a first fill material in a first and second trench where the second trench has a greater width than the first trench; removing a portion of the first fill material from each trench and forming a second fill material over the first fill material; removing a portion of the first and second fill material within the second trench; and forming a third fill material in the second trench. The structure may include a first fill material in trenches having different widths wherein the upper surfaces of the first fill material in each trench are substantially co-planar. The structure may also include a second fill material on the first fill material in each trench, the second fill material having a substantially equal thickness in each trench.
Abstract:
In conjunction with a replacement metal gate (RMG) process for forming a fin field effect transistor (FinFET), gate isolation methods and associated structures leverage the formation of distinct narrow and wide gate cut regions in a sacrificial gate. The formation of a narrow gate cut between closely-spaced fins can decrease the extent of etch damage to interlayer dielectric layers located adjacent to the narrow gate cut by delaying the deposition of such dielectric layers until after formation of the narrow gate cut opening. The methods and resulting structures also decrease the propensity for short circuits between later-formed, adjacent gates.
Abstract:
At least one method, apparatus and system disclosed herein involves forming trench in a gate region, wherein the trench having an oxide layer to a height to reduce or prevent process residue. A plurality of fins are formed on a semiconductor substrate. Over a first portion of the fins, an epitaxial (EPI) feature at a top portion of each fin of the first portion. Over a second portion of the fins, a gate region is formed. In a portion of the gate region, a trench is formed. A first oxide layer at a bottom region of the trench is formed. Prior to performing an amorphous-silicon (a-Si) deposition, a flowable oxide material is deposited into the trench for forming a second oxide layer. The second oxide layer comprises the flowable oxide and the first oxide layer. The second oxide layer has a first height.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to a contact over an active gate structure and methods of manufacture. The structure includes: an active gate structure composed of conductive material located between sidewall material; an upper sidewall material above the sidewall material, the upper sidewall material being different material than the sidewall material; and a contact structure in electrical contact with the conductive material of the active gate structure. The contact structure is located between the sidewall material and between the upper sidewall material.
Abstract:
Methods produce integrated circuit structures that include (among other components) fins extending from a first layer, source/drain structures on the fins, source/drain contacts on the source/drain structures, an insulator on the source/drain contacts defining trenches between the source/drain contacts, gate conductors in a lower portion of the trenches adjacent the fins, a first liner material lining a middle portion and an upper portion of the trenches, a fill material in the middle portion of the trenches, and a second material in the upper portion of the trenches. The first liner material is on the gate conductors in the trenches.
Abstract:
At least one method, apparatus and system providing semiconductor devices with relatively short gate heights but without a relatively high risk of contact-to-gate shorts. In embodiments, the method, apparatus, and system may provide contact formation by way of self-aligned contact processes.
Abstract:
Methods comprising providing a semiconductor substrate; a fin disposed on the semiconductor substrate; a dummy gate disposed over the fin, wherein the dummy gate has a top at a first height above the substrate; and an interlayer dielectric (ILD) disposed over the fin and adjacent to the dummy gate, wherein the ILD has a top at a second height above the substrate, wherein the second height is below the first height; and capping the ILD with a dielectric cap, wherein the dielectric cap has a top at the first height. Systems configured to implement the methods. Semiconductor devices produced by the methods.