Abstract:
A fuel injection nozzle for internal combustion engines, provided with a valve needle and an induction coil, which sits in a spacer plate mounted between the nozzle body and the nozzle holder. The valve needle projects into the induction coil and acts upon the magnetic domain of the induction coil by the action of its movement, whereby a signal dependent on the velocity of the needle is produced. The induction coil is provided with laterally disposed contact prongs which are connected with extended connecting wires by means of a weld or solder joint. The connecting wires lead through boreholes in the nozzle holder. The injection nozzle is distinguished by an especially small electrical line resistance, and by the fact that, with appropriate dimensioning and construction of the ends of the connecting wires, which carry the extended connection contacts, there will be no special contact measures necessary for disassembly.
Abstract:
A device is proposed for drift compensation in fuel metering systems, in which it is not the metered quantity as such which is controlled in closed-loop fashion, but rather only the position of a quantity-determining member. The object of the invention is to maintain or re-obtain the original association between the fuel quantity and the position signal of the quantity-determining member for the purpose of providing a correct indication of the load state existing at a particular time. The drift compensation is intended to be capable of being performed manually, semi-automatically, or automatically, in an additive and/or multiplicative manner. It can furthermore be realized via a preferably rpm-dependent characteristic curve. The various values may be ascertained, for instance, in connection with running-out and running-up tests.
Abstract:
A fuel control system for an internal combustion engine with correction for optimum values based on a variety of factors. Characteristic engine data is stored in preferably digital memories with capabilities for interpolation. Upon addressing the engine data fields with input signals related to current operational variables, for example the accelerator pedal position, the control system derives therefrom a nominal air flow rate which is used as the reference value in a control loop that sets the amount of recycled exhaust gas and the fresh air flow. As the actual air flow rate approaches the reference value, the fuel flow is adjusted to insure correct mixtures at all times. In another embodiment, the fuel is supplied on demand but cannot exceed a maximum value except under special override conditions. Several other embodiments and variants are presented.
Abstract:
A device is proposed for the adjustment of a quantity-metering member of a fuel injection pump in an internal combustion engine with self-ignition, comprising an electric circuit arrangement for a control signal dependent on operating parameters, this signal inffluencing the position of the quantity-metering member via an electromagnetic servo unit wherein the electric circuit arrangement includes at least one series circuit made up of a minimum value selection stage, a maximum value selection stage, and a servo unit controller for the quantity-metering member and the output signals of at least two set-point stages for, in particular, the speed, the smoke limit, equalization, and exhaust gas temperature can be fed to the minimum value selection stage with the maximum value selection stage additionally coupled to a start control stage. In addition to the use of the device as a total controller, i.e., the electric circuit arrangement alone determines the position of the quantity-metering member and no mechanical controller is additionally provided, the device can also be utilized where only a regulated stop for the quantity-metering member, for example a control rod, is present as the control member ("signal mixing"). The purpose of the proposed device is to furnish an electronic speed regulation for idling and for intermediate speeds, beyond the quantity-limiting functions of equalization (limitation of the injection only in dependence on the speed), smoke limit, and exhaust gas temperature limit, in case of a total controller as well as in case of signal mixing with the aid of a controlled servo unit, so that the speed is maintained constant at the preset and/or desired value even in an unstable condition during varying loads, for example, due to the additional connection of auxiliary units.
Abstract:
A fuel injection pump for an internal combustion engine including a low pressure sump and a sump piston, reciprocating in a cylinder, for imparting elevated pressure to the fuel for delivery to injection valves. The pressure chamber in the pump cylinder can be opened to the sump at some adjustable point of the piston stroke to limit fuel delivery. A secondary conduit between the pressure chamber and the sump includes a flow throttle that variably restricts the return flow of fuel as adjusted by fluid pressure which is regulated by a secondary fuel control mechanism. This mechanism is subject to closed-loop control via an air flow rate meter disposed in the induction tube and also acts as a limiting stop for the baffle plate of the air flow rate meter.
Abstract:
Apparatus for measuring the amount of fuel supplied by a fluid supply device wherein a throttle element is inserted in a supply line to a supply device having an apportioning cross-section wherein a constant pressure differential is maintained by means of a pressure comparison device in which the comparison results in an adjustment of the throttle element and whereby the cross-section or the position of the throttle element provides a measurement of the amount of fluid flowing through the supply line which can be transformed into a desirable and useful control value.
Abstract:
Apparatus for measuring the amount of fuel supplied by a fluid supply device wherein a throttle element is inserted in a supply line to a supply device having an apportioning cross-section wherein a constant pressure differential is maintained by means of a pressure comparison device in which the comparison results in an adjustment of the throttle element and whereby the cross-section or the position of the throttle element provides a measurement of the amount of fluid flowing through the supply line which can be transformed into a desirable and useful control value.
Abstract:
An apparatus for controlling the ratio of air to fuel quantity of the operational mixture to be introduced into the combustion chambers of an internal combustion engine which includes an air flow rate meter moving under differential pressure against a constant hydraulic restoring force, which air flow rate meter adjusts a metering cross section in a supply line leading to a fuel injection pump, with the pressure drop at the metering cross section being maintained constant with the aid of a differential pressure valve. The air flow rate meter is part of a known apparatus which controls the fuel component in accordance with the quantity of aspirated air and also controls the component of exhaust gas to be fed back. The hydraulic restoring pressure for the air flow rate meter is drawn via a throttle from the supply side of a supply pump which supplies the injection pump with fuel under an rpm-dependent pressure and with a quantity of fuel intended for flushing and the pressure downstream of the throttle is maintained at a constant value by means of a pressure maintenance valve. The working chambers of the injection pump communicate only with either the injection lines or the fuel supply line controlled by the air flow rate meter, so that the control result is not adulterated by the flushing quantity or by a shutoff quantity. In this manner, the injection pump and the control device can be supplied with fuel and with pressure fluid by means of a single supply pump.
Abstract:
A device for exhaust gas recycling is proposed which controls the amount of recycled exhaust gas in an internal combustion engine equipped with an injection unit so that a certain air factor is attained. The device comprises a closing element for the exhaust gas return conduit, which latter terminates into the intake manifold, this closing element being suitably constituted by a throttle valve and being directly connected to the adjusting lever or control rod of the injection pump. If this connection is established via a resilient linkage between the adjusting lever and the exhaust gas return valve, then the thus-recycled amount of exhaust gas can be dimensioned so that a specific quantity of recycled exhaust gas is associated with a specific angular position of the adjusting lever.
Abstract:
A fuel supply device for internal combustion engines wherein the temperature of the fuel fed to an injection pump can be regulated in order to avoid temperature influences on the fuel metering operation. For this purpose, fuel is withdrawn in a controlled quantity via a temperature-controlled valve from the intake chamber of the injection pump, where the fuel is under the feed pressure of a fuel feed pump and the withdrawn fuel is fed, either by way of a heat exhchanger or directly back to the intake side of the fuel feed pump. In this arrangement, the inherent fuel heating process taking place in the fuel injection pump is exploited to regulate the temperature of the fuel fed to the fuel feed pump.