Abstract:
In an example implementation, a method of cell lysis includes moving cell fluid from a first reservoir through a microfluidic channel toward a second reservoir, activating a lysing element multiple times as a cell from the cell fluid passes through the microfluidic channel, and moving lysate fluid that results from the activating through the microfluidic channel and into the second reservoir.
Abstract:
In an example implementation, a method of controlling a microfluidic valve includes activating a first inertial pump at a first frequency, and a second inertial pump at a second frequency to create a first fluid flow pattern within a microfluidic valve. The method also includes adjusting at least one of the first frequency and the second frequency to change the first fluid flow pattern to a second fluid flow pattern.
Abstract:
Example fluidic channels for microfluidic devices are disclosed. In examples disclosed herein, an example microfluidic device includes a body having a microfluidic network. The microfluidic network includes a main fluid channel to transport a biological fluid from a first cavity of the microfluidic network to a second cavity of the microfluidic network. An auxiliary fluid channel is in fluid communication with to the main fluid channel. The auxiliary fluid channel has a first end and a second end. The first end is in fluid communication with the main fluid channel and the second end is spaced from the main fluid channel. A fluid actuator is positioned in the auxiliary fluid channel to induce fluid flow in the main fluid channel.
Abstract:
A droplet of fluid having a predetermined drop weight is ejected from a microfluidic channel. Electrical signals are received from a sensor in the microfluidic channel, wherein the electrical signals vary in response to the ejection of the droplet of fluid. The electrical signals of the sensor are calibrated to a rate of flow of fluid through the microfluidic channel based on a number of droplets ejected and the predetermined drop weight of each droplet.
Abstract:
A print head has an ink slot and a sensing chamber having a first port connected to the fluid slot and a second port. The sensing chamber contains an ink level sensor. A recirculation passage extends from the fluid slot and is fluidly coupled to the second port. A fluid pump circulates fluid through the recirculation passage.
Abstract:
A method for determining an issue in an inkjet nozzle with impedance measurements, includes taking a first impedance measurement to detect a drive bubble with an impedance sensor; and taking a second impedance measurement to detect said drive bubble with said impedance sensor after said first impedance measurement.
Abstract:
A sensor images drops ejected from a printhead nozzle. The sensor has two parallel spaced-apart rows of imaging pixels. In one example, a lens projects an image of a drop ejected from a printhead onto the rows sequentially as the drop travels along a trajectory.
Abstract:
A PCR kit-of-parts is described. The kit-of-parts comprises a first oligonucleotide bound to a bead by a cleavable linker; a second oligonucleotide bound to a bead by a cleavable linker; and an enzyme bound to a bead by a cleavable linker; wherein the first and second oligonucleotide form an oligonucleotide pair complementary to a nucleic acid of interest and the enzyme is capable of extending nucleic acid strands; and each cleavable linker is independently selected from a photocleavable linker and a thermally cleavable linker. Also described is a method of performing PCR and a PCR system.
Abstract:
An example device includes an array of sensor modules. A sensor module includes a body to be positioned in alignment with a planar target, a light source coupled to the body to emit light to the planar target along a source optical path, and a plurality of light sensors coupled to the body. Each light sensor is to sense a different wavelength of light received from the planar target along a sensor optical path. The sensor optical path is different from the source optical path. The bodies of the array of sensor modules are arranged in a planar tiling pattern with respect to a longitudinal axis of the planar target.
Abstract:
A printing fluid pen includes a plurality of fluid ports, a pressure regulator in fluid communication with a first fluid port, and a valve in fluid communication with a second fluid port. The first fluid port is to deliver printing fluid to a fluid ejection device, and the second fluid port is to direct printing fluid out of the pen. In response to negative pressure, the valve is to open to enable fluids within the pen to exit via the second port.