Abstract:
Some demonstrative embodiments include devices, systems and/or methods of communicating non-cellular access network information via a cellular network. For example, an Evolved Node B (eNB) may include a radio to transmit a control message over a cellular communication medium, the control message including access network information of at least one non-cellular network within a coverage area of the eNB.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of establishing a connection between a cellular node and a core network. For example, a first Evolved Node B (eNB) may include a cellular transceiver to communicate with a User Equipment (UE); an X2 interface to communicate with at least one second eNB; and a controller to send to the second eNB a first message including a core network node discovery request, to receive from the second eNB a second message including a core network node identifier, and to establish an S1 connection between the first eNB and a core network using the core network node identifier.
Abstract:
Embodiments of the present disclosure describe systems, devices, and methods for interworking between a universal mobile telecommunications system (UMTS) network and a wireless local area network (WLAN). Various embodiments may include utilizing traffic steering rules based on radio access network assistance parameters to perform traffic steering between the UMTS network and the WLAN. Other embodiments may be described or claimed.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of controlling Radio Access Technology (RAT) communication managers. For example, a RAT controller may communicate with a plurality of RAT communication managers to receive measurement information from one or more of the RAT communication managers, and, based on the measurement information, to send traffic steering information to at least one RAT communication manager.
Abstract:
Technology for a user equipment (UE) to perform long-term evolution (LTE) and Wireless local area network (WLAN) aggregation (LWA) connection procedures within a wireless communication network is disclosed. The UE can determine to suspend communication on a wireless local area network (WLAN) of one or more protocol data units (PDUs) for a LWA session without terminating the LWA session. The UE can process, for transmission to an eNodeB, a request to suspend communication of the one or more PDUs on the WLAN to enable the eNodeB to schedule the one or more PDUs for transmission to the UE through a cellular interface without terminating the LWA session.
Abstract:
In a communication device and communication method, channel quality information for first and the second communication protocols is calculated. Further, allocation information can be generated for the first and the second communication protocols based on the corresponding channel quality information. Sequence numbers of corresponding data frames to be transmitted by the communication device can be generated. Further, the data frames and corresponding sequence numbers can be allocated to the first and the second communication protocols based on the allocation information.
Abstract:
Some demonstrative embodiments include devices, systems and methods of offloading traffic of a Secondary Cell Group (SCG). For example, some embodiments may include identifying a SCG bearer that is offloadable to the Internet via a Network Address Translation (NAT) gateway, based on offloading information received from a Master Evolved Node B (eNB) (MeNB); and offloading uplink Internet Protocol (IP) packets of the SCG bearer to the Internet via the NAT gateway, if the SCG bearer is indicated to be offloadable.
Abstract:
An apparatus comprises a memory and processing circuitry that are configured to implement a first network control protocol (NCP) MAC layer configured to handle MAC layer communications of the first NCP, and sniffer edge circuitry. The sniffer edge circuitry is configured to communicate with the first NCP MAC layer and a second NCP MAC layer and to capture events related to second NCP (WiGig) communications. These captured events are communicated over a dedicated sniffer network, and packet contents communicated between the second NCP MAC layer and the second NCP stack are secure from the sniffer edge circuitry. The apparatus receives a distributed common time reference and uses this to timestamp the captured events.
Abstract:
Embodiments of methods for scanning in a directive multi-gigabit network are generally described herein. An apparatus of a station may include processing circuitry configured to decode a sector sweep beacon received from an access point, encode for transmission a sector sweep feedback message to include a beam refinement protocol (BRP) request, and encode for transmission BRP responses to BRP signaling received from the access point. The processing circuitry may be further configured to decode a link margin feedback signal received from the access point to determine an access point link margin, measure signal information associated with the link margin feedback signal to determine a received link margin measurement, and encode signaling for association with the access point based on the access point link quality and the receive link quality.
Abstract:
Wireless communication traffic can be offloaded from a user equipment (UE) to two wireless points of access. For example, user equipment (UE) is connected to a radio access network (RAN) using a radio access technology (RAT) such as a long term evolution (LTE) network. The UE can determine which network capabilities are available for traffic offloading and adapt to the capabilities presented. In one embodiment, the UE can determine whether the network supports three different configurations and configure traffic offloading to operate within the network conditions: (1) RAN rules without access network detection and selection function (ANDSF), (2) ANDSF in conjunction with RAN rules or (3) enhanced ANDSF with RAN assistance.