摘要:
A device and method of reducing ground bounce using a CMOS driver 200. The driver includes a first CMOS pass gate 214 and a second CMOS pass gate 222. The first pass gate is used to drive the gate of a PMOS pull-up transistor 210, while the second pass gate is used to drive the gate of an NMOS pull-down transistor 218.
摘要:
A programmable logic device is presented comprising a global interconnect array whose lines are fed via programmable multiplexers to logic array blocks. The global interconnect array lines are fed to the multiplexers in a specific pattern which maximizes the user's ability to route a selected line to the output of a selected multiplexer, while at the same time maintaining higher speed and lower power consumption, and using less chip array than prior art programmable logic devices using programmable interconnect arrays based on erasable programmable read-only memories.
摘要:
A macrocell with product term allocation and adjacent product term stealing is disclosed. Programmable configuration switches provide product term allocation by directing input product terms to an OR gate or to the secondary inputs to a register. Adjacent product term stealing is accomplished by providing the output of the OR gate of each macrocell as an input to the OR gate of an adjacent macrocell. By using the output of the OR gate of the first macrocell, the adjacent macrocell steals the product terms and the OR gate of the first macrocell for use in its own OR gate. An arbitrarily wide OR function can be implemented by daisy chaining the OR gates of adjacent macrocells. Because programmable configuration switches can direct individual input product terms to the register logic instead of the OR gate, the register logic can be used even when an adjacent macrocell steals the OR gate.
摘要:
A transceiver system with reduced latency uncertainty is described. In one implementation, the transceiver system has a word aligner latency uncertainty of zero. In another implementation, the transceiver system has a receiver-to-transmitter transfer latency uncertainty of zero. In yet another implementation, the transceiver system has a word aligner latency uncertainty of zero and a receiver-to-transmitter transfer latency uncertainty of zero. In one specific implementation, the receiver-to-transmitter transfer latency uncertainty is eliminated by using the transmitter parallel clock as a feedback signal in the transmitter phase locked loop (PLL). In one implementation, this is achieved by optionally making the transmitter divider, which generates the transmitter parallel clock, part of the feedback path of the transmitter PLL. In one implementation, the word aligner latency uncertainty is eliminated by using a bit slipper to slip bits in such a way so that the total delay due to the word alignment and bit slipping is constant for all phases of the recovered clock. This allows for having a fixed and known latency between the receipt and transmission of bits for all phases of parallelization by the deserializer. In one specific implementation, the total delay due to the bit shifting by the word aligner and the bit slipping by the bit slipper is zero since the bit slipper slips bits so as to compensate for the bit shifting that was performed by the word aligner.
摘要:
Integrated circuits with memory error detection and correction (EDC) circuitry are provided. The EDC circuitry may include first and second data registers and a comparator. The first data register may store data read from a selected frame. The second data register may be loaded with a predetermined bit stream. If a soft error is detected, correct bits generated using a logic function associated with the predetermined bit stream may be written back to the selected frame. In another suitable arrangement, the EDC circuitry may include first and second registers, a mask register, and a comparator. The first data register may store data read from a selected frame. The second data register may be loaded with desired data. The mask register may be loaded with mask bits. If a soft error is detected, the correct bits may be written back to the selected frame if the corresponding mask bits are high.
摘要:
Systems and methods are disclosed for preventing tampering of a programmable integrated circuit device. Generally, programmable devices, such as FPGAs, have two stages of operation; a configuration stage and a user mode stage. To prevent tampering and/or reverse engineering of a programmable device, various anti-tampering techniques may be employed during either stage of operation to disable the device and/or erase sensitive information stored on the device once tampering is suspected. One type of tampering involves bombarding the device with a number of false configuration attempts in order to decipher encrypted data. By utilizing a dirty bit and a sticky error counter, the device can keep track of the number of failed configuration attempts that have occurred and initiate anti-tampering operations when tampering is suspected while the device is still in the configuration stage of operation.
摘要:
A macrocell for a programmable logic device includes circuitry for allowing a neighboring macrocell to borrow various numbers of the product terms of the macrocell. The macrocell can continue to make full use of its product terms that are not thus borrowed. This includes logically combining and registering the unborrowed product terms. The macrocell may include circuitry for feeding back to the AND array of the programmable logic device a combinatorial or registered signal of the macrocell, and also outputting such a combinatorial or registered signal from the macrocell. When a combinatorial signal is fed back, the register of the macrocell can be used for another signal of the macrocell.
摘要:
A programmable logic device is adapted to predict carry values in long-chain-carry logic configurations. In the most preferred embodiment, which functions in any long-carry-chain logic configuration, each logic region calculates a result for both values of the carry-in signal to that region, and when a carry signal for the group to which the region belongs reaches the region, the correct result in each region, and thence the correct carry-out for that group, are calculated and propagated. The carry-out terminal of one group is arranged to be adjacent to the carry-in terminal of the next group, to enhance carry propagation speed. In another embodiment, each region looks back two regions to predict the carry-in. In two additional embodiments, logic is provided to mathematically calculate the carry values.
摘要:
A programmable logic device is configured to accommodate multiplication by the provision in each logic region of specialized components to form and sum partial products. The specialized components are separate from the ordinary logic of the logic region, and their presence imposes little penalty on the performance of ordinary logic functions, while enhancing the speed at which multiplication is performed by minimizing the number of logic regions used for a particular multiplication operation, and also minimizing the use of the interconnection resources of the device to convey signals among those regions.
摘要:
Disclosed is a programmable logic device (PLD) that includes logic cells that can be allocated among zones and are preferably allocated among four quadrants. I/O pins are permanently associated with a quadrant by placing the I/O pins along an exterior edge of that quadrant. Logic cells which are located in a quadrant are directly connected to I/O pins which are permanently associated with that quadrant. Even if additional logic cells are added to the PLD without changing the number of I/O pins, the I/O pins located along an exterior edge of a quadrant will still be directly connected to the logic cells in that quadrant. Thus, a user can determine whether use of a given I/O pin and logic cell, regardless of the number of logic cells in the PLD, will result in an inter-quadrant signal transmission delay.