摘要:
Reliable contacts/vias are formed by sputter etching to flare exposed edges of an opening formed in a dielectric layer, depositing a composite barrier layer and then filling the opening with tungsten at a low deposition rate. The resulting contact/via exhibits significantly reduced porosity and contact resistance. Embodiments include sputter etching to incline the edges of an opening formed in an oxide dielectric layer, e.g., a silicon oxide derived from TEOS or BPSG, at an angle of about 83° to about 86°, depositing a thin layer of Ti, e.g., at a thickness of about 250 Å to about 350 Å, depositing at least one layer of titanium nitride, e.g., three layers of titanium nitride, at a total thickness of about 130 Å to about 170 Å, and then depositing tungsten at a deposition rate of about 1,900 to about 2,300 Å/min to fill the opening.
摘要:
A method for making 0.25-micron semiconductor chips includes annealing the metal interconnect lines prior to depositing an inter-layer dielectric (ILD) between the lines. During annealing, an alloy of aluminum and titanium forms, which subsequently volumetrically contracts, with the contraction being absorbed by the aluminum. Because the alloy is reacted prior to ILD deposition, however, the aluminum is not constrained by the ILD when it attempts to absorb the contraction of the alloy. Consequently, the likelihood of undesirable void formation. in the interconnect lines is reduced. The likelihood of undesirable void formation is still further reduced during the subsequent ILD gapfill deposition process by using relatively low bias power to reduce vapor deposition temperature. and by using relatively low source gas deposition flow rates to reduce flow-induced compressive stress on the interconnect lines during ILD formation.
摘要:
Cu diffusion between Cu and Cu alloy interconnect members, e.g., lines, in a silicon oxide inter-layer dielectric is avoided or substantially reduced by converting an upper portion of the silicon oxide inter-layer dielectric between neighboring lines to silicon oxynitride and then depositing a capping layer. Embodiments include filling damascene trenches in a silicon oxide inter-layer dielectric with Cu or a Cu alloy, CMP to effect planarization such that the upper surfaces of the lines are substantially coplanar with the upper surface of the inter-layer dielectric and treating the exposed surfaces with a high strength ammonia plasma to ion bombard the exposed inter line silicon oxide with nitrogen atoms, thereby converting the upper portion to silicon oxynitride, while simultaneously removing or substantially reducing surface oxides on the lines. A silicon nitride capping layer is then deposited.
摘要:
An integrated circuit and manufacturing method therefor is provided having a semiconductor substrate with a semiconductor device. A dielectric layer formed over the semiconductor substrate has an opening provided therein. The dielectric layer is of non-barrier dielectric material capable of being changed into a barrier dielectric material. The dielectric layer around the opening is changed into the barrier dielectric material and the conductor core material is deposited to fill the opening. The conductor core is processed to form a channel for the integrated circuit.
摘要:
The dimensional accuracy of trench formation and, hence, metal line width, in damascene technology is improved by employing a low Si—SiON etch stop layer/ARC with reduced etch selectivity with respect to the overlying dielectric material but having a reduced extinction coefficient (k). Embodiments include via first-trench last dual damascene techniques employing a low Si—SiON middle etch stop layer/ARC having an extinction coefficient of about −0.3 to about −0.6, e.g., about −0.35, with reduced silicon and increased oxygen vis-à-vis a SiON etch stop layer having an extinction coefficient of about −1.1. Embodiments also include removing about 60% to about 90% of the low Si—SiON etch stop layer/ARC during trench formation, thereby reducing capacitance.
摘要:
An insulating and capping structure of an integrated circuit is formed on a semiconductor wafer. An insulating layer is formed on the semiconductor wafer, and the insulating layer is comprised of a dielectric material having a low dielectric constant that is less than about 4.0 and having chemical bonds that are chemically reactive with a predetermined reactant. A reaction barrier layer is formed on the insulating layer, and the reaction barrier layer is comprised of a material that is not chemically reactive with the predetermined reactant. A capping layer is formed on the reaction barrier layer, and the capping layer is formed using the predetermined reactant. The reaction barrier layer prevents contact of the predetermined reactant with the insulating layer to prevent reaction of the predetermined reactant with the chemical bonds of the dielectric material of the insulating layer that are chemically reactive with the predetermined reactant such that the low dielectric constant of the dielectric material of the insulating layer is not increased by the formation of the capping layer. The present invention may be used to particular advantage when the predetermined reactant used for forming the capping layer and that is reactive with the insulating layer is oxygen plasma and when the reaction barrier layer is comprised of silicon nitride.
摘要:
The present invention provides a method for manufacturing a semiconductor device with a bottom anti-reflective coating (BARC) that acts as an etch stop layer and does not need to be removed. In one embodiment, electrical devices are formed on a semiconductor substrate. Contacts are then formed for each electrical device and a partially UV transparent BARC is then deposited. An inter-layer dielectric (ILD) layer is then formed and then covered with photoresist. A top ARC (TARC) is then added and the photoresist is then photolithographically processed and subsequently developed. The TARC, ILD, and BARC layers are then selectively etched down to the device contacts forming local interconnects. The photoresist and TARC are later removed, but the BARC does not require removal due to its optical transparency.
摘要:
Cu diffusion between Cu and Cu alloy interconnect members, e.g., lines, in a silicon oxide inter-layer dielectric is avoided or substantially reduced by converting an upper portion of the silicon oxide inter-layer dielectric between neighboring lines to silicon oxynitride and then depositing a capping layer. Embodiments include filling damascene trenches in a silicon oxide inter-layer dielectric with Cu or a Cu alloy, CMP to effect planarization such that the upper surfaces of the lines are substantially coplanar with the upper surface of the inter-layer dielectric and treating the exposed surfaces with a nitrogen plasma of sufficient strength to ion bombard the exposed inter line silicon oxide with nitrogen, thereby converting the upper portion to silicon oxynitride, while simultaneously removing or substantially reducing surface oxides on the lines. A silicon nitride capping layer is then deposited.
摘要:
Cu diffusion between Cu and/or Cu alloy interconnect members, e.g., lines, is avoided or substantially reduced by removing an upper portion of the inter-layer dielectric between neighboring lines to form a recess and depositing a diffusion barrier layer filling the recess between neighboring lines. Interconnects in accordance with embodiments of the present invention include Cu and/or Cu filled damascene trenches in a silicon oxide inter-layer dielectric oxide with a recess between neighboring lines filled with a silicon nitride capping layer.
摘要:
Capping layer adhesion to a Cu or Cu alloy interconnect member is enhanced by treating the exposed surface of the Cu or Cu alloy interconnect member with a hydrogen plasma to substantially reduce oxides thereon, forming a thin layer of copper silicide on the treated surface and depositing the capping layer thereon. Embodiments include electroplating or electroless plating Cu or a Cu alloy to fill a damascene opening in a dielectric layer, chemical-mechianiical polishing, hydrogen plasma treatment, reacting the treated surface with silane or dichlorosilane to form a layer of copper silicide on the treated surface and depositing a silicon nitride capping layer on the thin copper silicide layer.