摘要:
A display panel includes gate lines formed on a substrate, storage electrode lines formed on the substrate and being parallel to the gate lines, data lines insulated from the gate lines and crossing the gate lines, a plurality of thin film transistors (TFTs) connected with the gate lines and the data lines, and pixel electrodes having a first sub-electrode connected with a TFT and a second sub-electrode formed at a side opposite the first sub-electrode with respect to a gate line, wherein the TFT and a storage electrode line are disposed between the first and second sub-electrodes.
摘要:
There are provided a TFT, a TFT substrate using the TFT, a method of fabricating the TFT substrate, and an LCD. The TFT includes a source region, a drain region, and a gate electrode having an opening. The opening of the gate electrode is to enhance the light sensing ability of the TFT when it is used as a light sensor, since light is incident into a region where the opening is formed. The TFT including the gate having the opening can be used in a substrate of a flat display or an LCD using such a substrate. The above TFT can sense light incident from outside the display to adjust the brightness of the screen according to the external illumination.
摘要:
A driving apparatus for a display device includes a signal controller synthesizing first and second signals, respectively, having first and second signal levels to output a synthesized signal having third to fifth signal levels, a signal extracting unit extracting the first and second control signals from the synthesized signal, a gate driver generating gate signals based on the first control signal, and a data driver generating data signals based on the second control signal.
摘要:
An apparatus for sensing a leakage current of a battery comprises a floating capacitor charged with a voltage detected from a cathode or anode terminal of a battery; a terminal selection switching unit for selecting a voltage detection path for the cathode or anode terminal; a charge switching unit for charging the floating capacitor with a detection voltage of the cathode or anode terminal, detected through the selected voltage detection path; a polarity reverse switching unit for reversing a polarity of the detection voltage of the anode terminal charged to the floating capacitor; and a leakage current determining unit for sensing the detection voltage of the cathode terminal charged to the floating capacitor and the polarity-reversed detection voltage of the anode terminal charged to the floating capacitor to calculate a leakage resistance, and comparing the calculated leakage resistance with a criterion insulation resistance to determine whether a leakage current occurs.
摘要:
Provided are a name service system and a method thereof. The name service system includes: a name service server registering a name and corresponding network information received through a communication network when name registration is requested, and sending network information corresponding to the registered name when a name call is requested; a plurality of monitoring devices collecting information, having respective names, requesting the name registration to the name service server through the communication network, registering the name and the network information corresponding to the name in the name service server, and sending changed network information to the name service server when the registered network information changes; and a plurality of remote control management devices connecting to the name service server through the communication network to request the name call, receiving network information corresponding to the name and sent from the name service server, connecting through the communication network using the network information, and thus receiving collected information. Accordingly, it is possible to communicate in a communication network environment using a dynamic Internet protocol (IP) address with only the name of a communication connection target and no additional information, so that a system making connection easy and effective can be constructed.
摘要:
An amplifying circuit of a display device including a plurality of pixels includes an input unit, a bias unit, and an output unit. The input unit is coupled between a first power source for supplying a first voltage and a second power source for supplying a second voltage, receives a first input signal and a second input signal, and is controlled by the first and second input signals. The bias unit receives a bias voltage for operating the input unit, and includes a first node and a second node controllable by the input unit. The output unit applies an output voltage to a pixel by using a first output transistor turned on/off by a signal applied to the first node and a second output transistor turned on/off by a signal applied to the second node, and the first output transistor is a different type to the second output transistor. In this instance, the input unit includes a first input transistor having a first terminal coupled to a first power source and being turned on/off by a first input signal and a second input transistor of the same type as the first input transistor, having a first terminal coupled to the first power source, and being turned on/off by a second input signal. The bias unit includes a first transistor controllable by the on/off state of the first input transistor and a second transistor controllable by the on/off state of the second input transistor.
摘要:
In an interface device for wireless testing capable of testing a semiconductor chip in a non-contact manner, a semiconductor device and a semiconductor package including the same, and a method for wirelessly testing a semiconductor device using the same are provided, the interface device for wireless testing includes an interface substrate, interface antennas on the interface substrate, and interface transmitting and receiving circuits on the interface substrate, wherein the interface transmitting and receiving circuits are electrically connected to input/output pads of a semiconductor chip via interface vias passing through the interface substrate.
摘要:
An internet interface service system and method are capable of connecting portable mobile terminals of users (such as notebook computers, palm top computers, network computers, PDAs, and the like) to a communication (or internet) network in public places (such as airports, conference places, bus terminals and the like). In accordance with the system and method, the mobile terminals are connected via the communication network to any of a plurality of information providing servers for receiving information. A settlement server is provided for performing electronic settlements of communication connection charges for the mobile terminals. An internet interface unit is provided for enabling the mobile terminals to be connected to the communication network and for charging the users of the mobile terminals for the usage of the internet interface service system. A central management server manages the internet interface unit, allocates dynamic IP addresses when the mobile terminals of users are connected to the internet interface unit, and releases the allocated addresses upon termination of communication of the mobile terminals.
摘要:
In a method of manufacturing a semiconductor device such as a flash memory device, an insulating pattern having an opening is formed to partially expose a surface of a substrate. A first silicon layer is formed on the exposed surface portion of the substrate and the insulating pattern. The first silicon layer has an opened seam overlying the previously exposed portion of the substrate. A heat treatment on the substrate is performed at a temperature sufficient to induce silicon migration so as to cause the opened seam to be closed via the silicon migration. A second silicon layer is then formed on the first silicon layer. Thus, surface profile of a floating gate electrode obtained from the first and second silicon layers may be improved.
摘要:
In methods of forming an oxide layer and an oxynitride layer, a substrate is loaded into a reaction chamber having a first pressure and a first temperature. The oxide layer is formed on the substrate using a reaction gas while increasing a temperature of the reaction chamber from the first temperature to a second temperature under a second pressure. Additionally, the oxide layer is nitrified in the reaction chamber to form the oxynitride layer on the substrate. When the oxide layer and/or the oxynitride layer are formed on the substrate, minute patterns of a semiconductor device, for example a DRAM device, an SRAM device or an LOGIC device may be easily formed on the oxide layer or the oxynitride layer.