摘要:
In methods of forming an oxide layer and an oxynitride layer, a substrate is loaded into a reaction chamber having a first pressure and a first temperature. The oxide layer is formed on the substrate using a reaction gas while increasing a temperature of the reaction chamber from the first temperature to a second temperature under a second pressure. Additionally, the oxide layer is nitrified in the reaction chamber to form the oxynitride layer on the substrate. When the oxide layer and/or the oxynitride layer are formed on the substrate, minute patterns of a semiconductor device, for example a DRAM device, an SRAM device or an LOGIC device may be easily formed on the oxide layer or the oxynitride layer.
摘要:
In methods of forming an oxide layer and an oxynitride layer, a substrate is loaded into a reaction chamber having a first pressure and a first temperature. The oxide layer is formed on the substrate using a reaction gas while increasing a temperature of the reaction chamber from the first temperature to a second temperature under a second pressure. Additionally, the oxide layer is nitrified in the reaction chamber to form the oxynitride layer on the substrate. When the oxide layer and/or the oxynitride layer are formed on the substrate, minute patterns of a semiconductor device, for example a DRAM device, an SRAM device or an LOGIC device may be easily formed on the oxide layer or the oxynitride layer.
摘要:
A method of forming a floating gate of a non-volatile memory device can include etching a mask pattern formed between field isolation regions in a field isolation pattern on a substrate to recess a surface of the mask pattern below an upper surface of adjacent field isolation regions to form an opening having a width defined by a side wall of the adjacent field isolation regions above the surface. Then the adjacent field isolation regions is etched to increase the width of the opening.
摘要:
In a method of manufacturing a semiconductor device such as a flash memory device, an insulating pattern having an opening is formed to partially expose a surface of a substrate. A first silicon layer is formed on the exposed surface portion of the substrate and the insulating pattern. The first silicon layer has an opened seam overlying the previously exposed portion of the substrate. A heat treatment on the substrate is performed at a temperature sufficient to induce silicon migration so as to cause the opened seam to be closed via the silicon migration. A second silicon layer is then formed on the first silicon layer. Thus, surface profile of a floating gate electrode obtained from the first and second silicon layers may be improved.
摘要:
A method of forming a floating gate of a non-volatile memory device can include etching a mask pattern formed between field isolation regions in a field isolation pattern on a substrate to recess a surface of the mask pattern below an upper surface of adjacent field isolation regions to form an opening having a width defined by a side wall of the adjacent field isolation regions above the surface. Then the adjacent field isolation regions is etched to increase the width of the opening.
摘要:
In a method of manufacturing a semiconductor device such as a flash memory device, an insulating pattern having an opening is formed to partially expose a surface of a substrate. A first silicon layer is formed on the exposed surface portion of the substrate and the insulating pattern. The first silicon layer has an opened seam overlying the previously exposed portion of the substrate. A heat treatment on the substrate is performed at a temperature sufficient to induce silicon migration so as to cause the opened seam to be closed via the silicon migration. A second silicon layer is then formed on the first silicon layer. Thus, surface profile of a floating gate electrode obtained from the first and second silicon layers may be improved.
摘要:
A method for forming a capacitor comprises forming a supporting insulating film, an etching stopper film made of alumina series or hafnium oxide series, and a mold insulating film on a surface of a semiconductor substrate having a first structure including conductive plugs surrounded by a first insulating film, patterning the mold insulating film, the etching stopper film and the supporting insulating film to form openings that expose the conductive plugs, forming a storage node conductive film electrically connected to the conductive plugs on the surface of the semiconductor substrate having the openings formed therein and concurrently annealing the etching stopper film, separating the storage node conductive film to form a plurality of storage nodes, exposing at least a part of an outer surface of the storage node by selectively etching remaining mold insulating film, which is exposed by the separated storage node conductive film, until the etching stopper film is exposed, and forming a plurality of plate nodes on the plurality of storage nodes with a dielectric film disposed therebetween.
摘要:
Disclosed herein is a method of forming a floating gate in a non-volatile memory device having a self-aligned shallow trench isolation (SA-STI) structure. First, a tunnel oxide layer is formed on a semiconductor substrate having a SA-STI structure. Next, a first floating gate layer is formed on the tunnel oxide layer at a first temperature of no less than about 530° C. A second floating gate layer is then formed on the first floating gate layer at a second temperature of no more than 580° C. After depositing the first floating gate layer, the second floating gate layer is in-situ deposited to prevent the growth of a native oxide layer on the surface of the first floating gate layer. Thus, gate resistance can be reduced and process time can be shortened.
摘要:
Disclosed herein is a method of forming a floating gate in a non-volatile memory device having a self-aligned shallow trench isolation (SA-STI) structure. First, a tunnel oxide layer is formed on a semiconductor substrate having a SA-STI structure. Next, a first floating gate layer is formed on the tunnel oxide layer at a first temperature of no less than about 530° C. A second floating gate layer is then formed on the first floating gate layer at a second temperature of no more than 580° C. After depositing the first floating gate layer, the second floating gate layer is in-situ deposited to prevent the growth of a native oxide layer on the surface of the first floating gate layer. Thus, gate resistance can be reduced and process time can be shortened.
摘要:
Disclosed herein is a method of forming a floating gate in a non-volatile memory device having a self-aligned shallow trench isolation (SA-STI) structure. First, a tunnel oxide layer is formed on a semiconductor substrate having a SA-STI structure. Next, a first floating gate layer is formed on the tunnel oxide layer at a first temperature of no less than about 530° C. A second floating gate layer is then formed on the first floating gate layer at a second temperature of no more than 580° C. After depositing the first floating gate layer, the second floating gate layer is in-situ deposited to prevent the growth of a native oxide layer on the surface of the first floating gate layer. Thus, gate resistance can be reduced and process time can be shortened.