摘要:
Provided is a relatively easy-to-fabricate piezoelectric power generating element capable of generating a large amount of electric power while comprising a bridge-type vibration beam that is resistant to damage from external vibration. This element comprises a support member, a strip-shaped vibration beam, a piezoelectric layer, and electrodes. The first and second ends of the vibration beam are fixed to the support member. The piezoelectric layer and the electrodes are provided on the surface of the vibration beam. The vibration beam extends in a plane when it is not vibrating. The vibration beam has a first portion that extends from the first end fixed to the support member, a second portion that extends from the second end fixed to the support member, and a third portion that connects the end of the first portion opposite to the first end and the end of the second portion opposite to the second end. The vibration beam has a shape such that, when viewed in a direction perpendicular to the plane, a first direction in which the first portion extends is a direction closer to the second end, and a second direction in which the second portion extends is a direction closer to the first end, the first and second directions each make an angle of more than 0° and less than 90° with respect to a straight line connecting the center of the first end and the center of the second end, and the third portion intersects once the straight line.
摘要:
A radiation detector with high detection sensitivity. The radiation detector according to the present invention includes an Al2O3 substrate, a Fe2O3 thin film layered on the Al2O3 substrate, a CaxCoO2 (where 0.15
摘要翻译:具有高检测灵敏度的辐射探测器。 根据本发明的辐射检测器包括Al 2 O 3衬底,层叠在Al 2 O 3衬底上的Fe 2 O 3薄膜,层叠在Fe 2 O 3薄膜上并具有CoO 2面的CaxCoO 2(其中0.15
摘要:
Provided are a piezoelectric thin film including a lead-free ferroelectric material and exhibiting high piezoelectric performance comparable to that of lead zirconate titanate (PZT), and a method of manufacturing the piezoelectric thin film. The piezoelectric thin film of the present invention comprises: a LaNiO3 film having a (001) orientation; a NaNbO3 film having a (001) orientation; and a (Bi, Na, Ba) TiO3 film having a (001) orientation. The LaNiO3 film, the NaNbO3 film, and the (Bi, Na, Ba)TiO3 film are laminated in this order.
摘要:
Provided are a piezoelectric thin film including a lead-free ferroelectric material and exhibiting high piezoelectric performance comparable to that of PZT, and a method of manufacturing the piezoelectric thin film. The piezoelectric thin film of the present invention has a multilayer structure in which a metal electrode film having a plane orientation of (100), a (Bi,Na)TiO3 film, and a (Bi,Na,Ba) TiO3 film having a plane orientation of (001) are laminated in this order. The piezoelectric thin film of the present invention can be applied to a wide range of fields and uses. For example, with the piezoelectric thin film of the present invention, an angular velocity sensor of the present invention having high sensitivity and a piezoelectric generating element of the present invention having excellent power generation characteristics can be constructed.
摘要:
The present invention provides a radiation detector with high detection sensitivity. The radiation detector according to the present invention includes an Al2O3 substrate, a Fe2O3 thin film layered on the Al2O3 substrate, a CaxCoO2 (where 0.15
摘要翻译:本发明提供具有高检测灵敏度的放射线检测器。 根据本发明的放射线检测器包括Al 2 O 3衬底,层叠在Al 2 O 3衬底上的Fe 2 O 3薄膜,层叠在Fe 2 O 3薄膜上并具有CoO 2面的CaxCoO 2(其中0.15
摘要:
The present invention provides thermoelectric elements, each of which can transfer heat efficiently to a heat source with a curved surface, such as a columnar heat source. A thermoelectric element of the present invention includes a laminate with two different types of thermoelectric conversion materials that are layered alternately from one end to the other end as well as a first electrode and a second electrode that are disposed at both ends of the laminate, respectively, wherein the laminate has a shape surrounding a straight line axis from the one end to the other end, when viewed from the direction along the axis, the laminate has an inner circumference with a circular or arc shape and each boundary between respective layers formed of the two different types of thermoelectric conversion materials is disposed in such a manner as to separate from a straight line as the boundary approaches an outer circumference from the inner circumference of the laminate, where the straight line passes an inner circumference-side edge point of the boundary, with the axis being a starting point thereof.
摘要:
The present invention provides an electric power generation method using a thermoelectric power generation element, a thermoelectric power generation element, and a thermoelectric power generation device, each of which has high thermoelectric power generation performance and can be used for more applications. The thermoelectric power generation element includes a first electrode and a second electrode that are disposed to oppose each other, and a laminate that is interposed between the first and second electrodes and that is electrically connected to both the first and second electrodes, where the laminate has a structure in which SrB6 layers and metal layers containing Cu, Ag, Au, or Al are laminated alternately, a thickness ratio between the metal layer and the SrB6 layer is in a range of metal layer: SrB6 layer=20:1 to 2.5:1, lamination surfaces of the SrB6 layers and the metal layers are inclined at an inclination angle θ of 20° to 50° with respect to a direction in which the first electrode and the second electrode oppose each other, and a temperature difference applied in a direction perpendicular to the direction in the element generates a potential difference between the first and second electrodes. The electric power generation method and thermoelectric power generation device each use the element.
摘要:
The present invention provides a thermal switching element that has a quite different configuration from that of a conventional technique and can control heat transfer by the application of energy, and a method for manufacturing the thermal switching element. The thermal switching element includes a first electrode, a second electrode, and a transition body arranged between the first electrode and the second electrode. The transition body includes a material that causes an electronic phase transition by application of energy. The thermal conductivity between the first electrode and the second electrode is changed by the application of energy to the transition body.
摘要:
With conventional thermoelectric conversion materials, their thermoelectric conversion performance has been insufficient, and a problem has been to achieve stable performance in an oxidizing atmosphere and an air atmosphere. In view of this, according to the present invention, a thermoelectric material is made of a complex oxide that has vanadium oxide as its main component and is represented by the general formula AxVOx+1.5+d. Here, A is at least one selected from an alkali element, an alkaline-earth element, and a rare-earth element, x is a numerical value within the range of 0.2 to 2, and d is a non-stoichiometric ratio of oxygen and is a numerical value within the range of from −1 to 1.
摘要翻译:使用传统的热电转换材料,其热电转换性能不足,并且在氧化气氛和空气气氛中的问题是达到稳定的性能。 鉴于此,根据本发明,热电材料由具有氧化钒作为其主要成分的复合氧化物制成,并且由通式A x X x X + 1.5 + d SUB>。 这里,A为选自碱金属元素,碱土金属元素和稀土元素中的至少一种,x为0.2〜2的数值,d为氧的非化学计量比 是-1〜1范围内的数值。
摘要:
The invention provides a power generation method using a thermoelectric element, a thermoelectric element, and a thermoelectric device that excel in thermoelectric performance and are applicable to a wider range of applications over conventional counterparts. The element includes a first electrode and a second electrode that are disposed to oppose each other, and a laminate interposed between the first and second electrodes and electrically connected to both of the electrodes. The laminate has a structure in which a Bi layer and a metal layer made of a metal other than Bi are alternately layered, and the Bi layer and the metal layer having layer surfaces that are slanted with respect to a direction in which the first and second electrodes oppose each other. The element generates a potential difference between the electrodes by a temperature difference created along a direction perpendicular to the opposing direction of the first and second electrodes in the element. The power generation method and the thermoelectric device use this element.