摘要:
A spin valve structure is disclosed in which an AP1 layer and/or free layer are made of a laminated Heusler alloy having Al or FeCo insertion layers. The ordering temperature of a Heusler alloy such as Co2MnSi is thereby lowered from about 350° C. to 280° C. which becomes practical for spintronics device applications. The insertion layer is 0.5 to 5 Angstroms thick and may also be Sn, Ge, Ga, Sb, or Cr. The AP1 layer or free layer can contain one or two additional FeCo layers to give a configuration represented by FeCo/[HA/IL]nHA, [HA/IL]nHA/FeCo, or FeCo/[HA/IL]nHA/FeCo where n is an integer ≧1, HA is a Heusler alloy layer, and IL is an insertion layer. Optionally, a Heusler alloy insertion scheme is possible by doping Al or FeCo in the HA layer. For example, Co2MnSi may be co-sputtered with an Al or FeCo target or with a Co2MnAl or Co2FeSi target.
摘要:
Concerns about inadequate electromigration robustness in CCP CPP GMR devices have been overcome by adding magnesium to the current confining structures that are presently in use. In one embodiment the alumina layer, in which the current carrying copper regions are embedded, is fully replaced by a magnesia layer. In other embodiments, alumina is still used but a layer of magnesium is included within the structure before it is subjected to ion assisted oxidation.
摘要:
Improved magnetic devices have been fabricated by replacing the conventional seed layer (typically Ta) with a bilayer of Ru on Ta. Although both Ru and Ta layers are ultra thin (between 5 and 20 Angstroms), good exchange bias between the seed and the AFM layer (IrMn about 70 Angstroms thick) is retained. This arrangement facilitates minimum shield-to-shield spacing and gives excellent performance in CPP, CCP-CPP, or TMR configurations.
摘要:
A spin valve structure for a spintronic device is disclosed and includes a composite seed layer made of at least Ta and a metal layer having a fcc(111) or hcp(001) texture to enhance perpendicular magnetic anisotropy (PMA) in an overlying (Co/Ni)x multilayer. The (Co/Ni)x multilayer is deposited by a low power and high Ar pressure process to avoid damaging Co/Ni interfaces and thereby preserving PMA. As a result, only a thin seed layer is required. PMA is maintained even after annealing at 220° C. for 10 hours. Examples of GMR and TMR spin valves are described and may be incorporated in spin transfer oscillators and spin transfer MRAMs. The free layer is preferably made of a FeCo alloy including at least one of Al, Ge, Si, Ga, B, C, Se, Sn, or a Heusler alloy, or a half Heusler alloy to provide high spin polarization and a low magnetic damping coefficient.
摘要:
A high performance TMR element is fabricated by inserting an oxygen surfactant layer (OSL) between a pinned layer and AlOx tunnel barrier layer in a bottom spin valve configuration. The pinned layer preferably has a SyAP configuration with an outer pinned layer, a Ru coupling layer, and an inner pinned layer comprised of CoFeXBY/CoFeZ wherein x=0 to 70 atomic %, y=0 to 30 atomic %, and z=0 to 100 atomic %. The OSL is formed by treating the CoFeZ layer with oxygen plasma. The AlOx tunnel barrier has improved uniformity of about 2% across a 6 inch wafer and can be formed from an Al layer as thin as 5 Angstroms. As a result, the Hin value can be decreased by ⅓ to about 32 Oe. A dR/R of 25% and a RA of 3 ohm-cm2 have been achieved for TMR read head applications.
摘要:
A high performance TMR sensor is fabricated by employing a free layer comprised of CoBX with a λ between −5×10−6 and 0 on a MgOX tunnel barrier. Optionally, a FeCo/CoBX free layer configuration may be used where x is about 1 to 30 atomic %. Trilayer configurations represented by FeCo/CoFeB/CoBX, FeCo/CoBX/CoFeB, FeCoY/CoFeW/CoBX, or FeCoY/FeB/CoBX may also be employed. Alternatively, CoNiFeB or CoNiFeBM formed by co-sputtering CoB with CoNiFe or CoNiFeM, respectively, where M is V, Ti, Zr, Nb, Hf, Ta, or Mo may be substituted for CoBx in the aforementioned embodiments. A 15 to 30% in improvement in TMR ratio over a conventional CoFe/NiFe free layer is achieved while maintaining a low Hc and RA
摘要:
A laminated main pole layer is disclosed in which a non-AFC scheme is used to break the magnetic coupling between adjacent high moment layers and reduce remanence in a hard axis direction while maintaining a high magnetic moment and achieving low values for Hch, Hce, and Hk. An amorphous material layer with a thickness of 3 to 20 Angstroms and made of an oxide, nitride, or oxynitride of one or more of Hf, Zr, Ta, Al, Mg, Zn, or Si is inserted between adjacent high moment stacks. The laminated structure also includes an alignment layer below each high moment layer within each stack. In one embodiment, a Ru coupling layer is inserted between two high moment layers in each stack to introduce an AFC scheme. An uppermost Ru layer is used as a CMP stop layer. A post annealing process may be employed to further reduce the anisotropy field (Hk).
摘要:
A MTJ structure is disclosed in which the seed layer is made of a lower Ta layer, a middle Hf layer, and an upper NiFe or NiFeX layer where X is Co, Cr, or Cu. Optionally, Zr, Cr, HfZr, or HfCr may be employed as the middle layer and materials having FCC structures such as CoFe and Cu may be used as the upper layer. As a result, the overlying layers in a TMR sensor will be smoother and less pin dispersion is observed. The Hex/Hc ratio is increased relative to that for a MTJ having a conventional Ta/Ru seed layer configuration. The trilayer seed configuration is especially effective when an IrMn AFM layer is grown thereon and thereby reduces Hin between the overlying pinned layer and free layer. Ni content in the NiFe or NiFeX middle layer is above 30 atomic % and preferably >80 atomic %.
摘要:
The conventional free layer in a CPP GMR read head has been replaced by a tri-layer laminate comprising Co rich CoFe, moderately Fe rich NiFe, and heavily Fe rich NiFe. The result is an improved device that has a higher MR ratio than prior art devices, while still maintaining free layer softness and acceptable magnetostriction. A process for manufacturing the device is also described.
摘要:
A TMR sensor, a CPP GMR sensor and a CCP CPP GMR sensor all include a tri-layered free layer that is of the form CoFe/CoFeB/NiFe, where the atom percentage of Fe can vary between 5% and 90% and the atom percentage of B can vary between 5% and 30%. The sensors also include SyAP pinned layers which, in the case of the GMR sensors include at least one layer of CoFe laminated onto a thin layer of Cu. In the CCP CPP sensor, a layer of oxidized aluminum containing segregated particles of copper is formed between the spacer layer and the free layer. All three configurations exhibit extremely good values of coercivity, areal resistance, GMR ratio and magnetostriction.