摘要:
A configurable common filterbank processor applicable for various audio standards and its processing method. Inverse modified discrete cosine transform (IMDCT) and window and overlap-add (WOA) decoding operations required by AC-3 and AAC, and IMDC, WOA, and matrixing decoding operations required by MP3 are divided into several different modes, and a quick algorithm is provided for expediting the operation of these modes, and a hardware architecture is designed universally for these modes, so that the hardware architecture can be applicable for the decoding operations of three different audio standards, respectively AC-3, AAC and MP3, to expand the scope of applicability of a decoder.
摘要:
Interpolations for a picture is done after edge detections in a de-interlace processor. By doing so, an amount of computing processes and a total time for the computing are saved; an efficiency of the computing is improved; and, a visual quality of the picture is enhanced.
摘要:
An inverse-modified discrete cosine transform and overlap-add method, and hardware structure for MPEG Layer3 audio signal decoding. In order to have the MPEG Layer3 audio signal decoder have more competitive power in the consumer market, the present invention provides a low cost fast algorithm of the inverse-modified discrete cosine transform and overlap-add, so that the quantity of the operation needed in the decoding process can be significantly reduced to enhance the system performance. Afterwards, according to the fast algorithm, the present invention provides a hardware structure that is suitable for the inverse-modified discrete cosine transform and overlap-add in the MPEG Layer3 decoder. Since the hardware structure of the present invention makes the MPEG Layer3 decoder able to be implemented by the application specific integrated circuit (ASIC), the entire system can fulfill the low cost and high performance requirements.
摘要:
A bonding pad structure includes a substrate and a first conductive island formed in a first dielectric layer and disposed over the substrate. A first via array having a plurality of vias is formed in a second dielectric layer and disposed over the first conductive island. A second conductive island is formed in a third dielectric layer and disposed over the first via array. A bonding pad is disposed over the second conductive island. The first conductive island, the first via array, and the second conductive island are electrically connected to the bonding pad. The first via array is connected to no other conductive island in the first dielectric layer except the first conductive island. No other conductive island in the third dielectric layer is connected to the first via array except the second conductive island.
摘要:
This invention provides an optical lens system comprising: a first lens element with negative refractive power having a convex object-side surface; a second lens element with negative refractive power having a concave object-side surface and a convex image-side surface; a third lens element with positive refractive power; a plastic fourth lens element with negative refractive power having a concave object-side surface and a convex image-side surface, with both the object-side and image-side surfaces thereof being aspheric, and having at least one inflection point positioned on at least one of the object-side and image-side surfaces thereof; wherein the number of lens elements with refractive power is limited to four. By such arrangement, especially by the first and the second lens elements with negative refractive power, the system has sufficient back focal length for arranging required optical elements, and thereby is suitable for various applications.
摘要:
An optical image capturing lens assembly includes four non-cemented lens elements, in order from an object side to an image side: a first lens element, a second lens element, a third lens element and a fourth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element with negative refractive power has a concave object-side surface and a convex image-side surface. The third lens element with positive refractive power has a convex object-side surface and a convex image-side surface, and is made of plastic material, wherein the surfaces of the third lens element are aspheric. The fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface, and is made of plastic material, wherein the surfaces of the fourth lens element are aspheric.
摘要:
This invention provides a capturing lens system in order from an object side to an image side comprising: a first lens element with positive refractive power; a plastic second lens element with negative refractive power having a concave object-side surface and a convex image-side surface, both the object-side and image-side surfaces thereof being aspheric; and a plastic third lens element with positive refractive power having a convex object-side surface and a concave image-side surface, both the object-side and image-side surfaces thereof being aspheric, and at least one inflection point is formed on at least one of the object-side and image-side surfaces thereof. Additionally, the central thickness of the second lens element is controlled favorably for the efficient spatial arrangement of the lens assembly and the simpler individual lens production while assuring suitable thickness of the second lens element, thereby assuring high image quality and improving yield rate of the product.
摘要:
An image capturing optical lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element with negative refractive power has a concave image-side surface. The third lens element with positive refractive power has a convex image-side surface. The fourth lens element has positive refractive power. The fifth lens element with refractive power is made of plastic material and has a concave image-side surface. At least one inflection point is formed on at least one of the object-side and image-side surfaces of the fifth lens element. The surfaces of the third lens element, the fourth lens element and the fifth lens element are aspheric.