Abstract:
Apparatus and methods are disclosed, such as a method that includes precharging channel material of a string of memory cells in an unselected sub-block of a block of memory cells to a precharge voltage during a first portion of a programming operation. A programming voltage can then be applied to a selected memory cell in a selected sub-block of the block of memory cells during a second portion of the programming operation. The selected memory cell is coupled to a same access line as an unselected memory cell in the unselected sub-block.
Abstract:
Conductive structures include stair step structures positioned along a length of the conductive structure and at least one landing comprising at least one via extending through the conductive structure. The at least one landing is positioned between a first stair step structure of the stair step structures and a second stair step structure of the stair step structures. Devices may include such conductive structures. Systems may include a semiconductor device and stair step structures separated by at least one landing having at least one via formed in the at least one landing. Methods of forming conductive structures include forming at least one via through a landing positioned between stair step structures.
Abstract:
Some embodiments include apparatuses, and methods of operating the apparatuses. Some of the apparatuses include a first memory cell string; a second memory cell string; a first group of conductive lines to access the first and second memory cell strings; a second group of conductive lines; a group of transistors, each transistor of the group of transistors coupled between a respective conductive line of the first group of conductive lines and a respective conductive line of the second group of conductive lines, the group of transistors having a common gate; and a circuit including a first transistor and a second transistor coupled in series between a first node and a second node, the first transistor including a gate coupled to the second node, and a third transistor coupled between the second node and the common gate.
Abstract:
Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a first pillar of a first memory cell string; a second pillar of a second memory cell string; a first conductive structure extending in a first direction, the first conductive structure located over and in electrical contact with the first pillar; a second conductive structure extending in the first direction, the second conductive structure located over and in electrical contact with the second pillar; a select gate coupled to the first and second memory cell strings; a first data line located on a first level of the apparatus and extending in a second direction, the first data line located over the first conductive structure and in electrical contact with the first conductive structure; and a second data line located on a second level of the apparatus and extending in the second direction, the second data line located over the second conductive structure and in electrical contact with the second conductive structure.
Abstract:
Memories may include a first bi-directional select device connected between a first access line and a second access line, and a plurality of memory cells, each memory cell of the plurality of memory cells connected between the second access line and a respective third access line of a plurality of third access lines. Each memory cell of the plurality of memory cells comprises a respective second bi-directional select device, of a plurality of second bi-directional select devices, and a respective programmable element, of a plurality of programmable elements, connected in series.
Abstract:
Some embodiments include apparatuses, and methods of operating the apparatuses. Some of the apparatuses include a data line, a first memory cell string including first memory cells located in different levels of the apparatus, first access lines to access the first memory cells, a first select gate coupled between the data line and the first memory cell string, a first select line to control the first select gate, a second memory cell string including second memory cells located in different levels of the apparatus, second access lines to access the second memory cells, the second access lines being electrically separated from the first access lines, a second select gate coupled between the data line and the second memory cell string, a second select line to control the second select gate, and the first select line being in electrical contact with the second select line.
Abstract:
In a memory device, odd bit lines of a flag memory cell array are connected with a short circuit to a dynamic data cache. Even bit lines of the flag memory cell array are disconnected from the dynamic data cache. When an even page of a main memory cell array is read, the odd flag memory cells, comprising flag data, are read at the same time so that it can be determined whether the odd page of the main memory cell array has been programmed. If the flag data indicates that the odd page has not been programmed, threshold voltage windows can be adjusted to determine the states of the sensed even memory cell page.
Abstract:
Conductive structures include stair step structures positioned along a length of the conductive structure and at least one landing comprising at least one via extending through the conductive structure. The at least one landing is positioned between a first stair step structure of the stair step structures and a second stair step structure of the stair step structures. Devices may include such conductive structures. Systems may include a semiconductor device and stair step structures separated by at least one landing having at least one via formed in the at least one landing. Methods of forming conductive structures include forming at least one via through a landing positioned between stair step structures.
Abstract:
Memories may include a first select device connected between a first access line and a second access line, and a plurality of memory cells. Each memory cell of the plurality of memory cells may be connected between the second access line and a respective third access line of a plurality of third access lines. Each memory cell of the plurality of memory cells may include a respective second select device, of a plurality of second select devices, and a respective programmable element, of a plurality of programmable elements, connected in series, and the first select device and each second select device of the plurality of second select devices may each be formed of a same type of circuit element.
Abstract:
Methods of operating memory devices including precharging an adjacent pair of data lines to a particular voltage, isolating one data line of the adjacent pair of data lines from the particular voltage while maintaining the other data line of the adjacent pair of data lines at the particular voltage, and selectively discharging the one data line depending upon a data value of a selected memory cell of a string of memory cells associated with the one data line.