Abstract:
A DRAM device includes an ECC generator/checker that generates ECC syndromes corresponding to items of data stored in the DRAM device. The DRAM device also includes an ECC controller that causes the ECC syndromes to be stored in the DRAM device. The ECC controller also causes a flag bit having a first value to be stored in the DRAM device when a corresponding ECC syndrome is stored. The ECC controller changes the flag bit to a second value whenever the corresponding data bits are modified, this indicating that the stored syndrome no longer corresponds to the stored data. In such case, the ECC controller causes a new ECC syndrome to be generated and stored, and the corresponding flag bit is reset to the first value. The flag bits may be checked in this manner during a reduced power refresh to ensure that the stored syndromes correspond to the stored data.
Abstract:
A DRAM memory device includes several banks of memory cells each of which are divided into first and second sets of memory cells. The memory cells in the first set can be refreshed at a relatively slow rate to reduce the power consumed by the DRAM device. Error checking and correcting circuitry in the DRAM device corrects any data retention errors in the first set of memory cells caused by the relatively slow refresh rate. The memory cells in the second set are refreshed at a normal rate, which is fast enough that data retention errors do not occur. A mode register in the DRAM device may be programmed to select the size of the second set of memory cells.
Abstract:
A memory device includes a memory component that stores data and a processor. The processor may receive requests from a requesting component to perform a plurality of data operations, generate a plurality of packets associated with the plurality of data operations, and continuously transmit each of the plurality of packets until each of the plurality of packets are transmitted. Each of the plurality of packets after the first packet of the plurality of packets is transmitted on a subsequent clock cycle immediately after a previous packet is transmitted.
Abstract:
Memory having internal processors, and methods of data communication within such a memory are provided. In one embodiment, an internal processor may concurrently access one or more banks on a memory array on a memory device via one or more buffers. The internal processor may be coupled to a buffer capable of accessing more than one bank, or coupled to more than one buffer that may each access a bank, such that data may be retrieved from and stored in different banks concurrently. Further, the memory device may be configured for communication between one or more internal processors through couplings between memory components, such as buffers coupled to each of the internal processors. Therefore, a multi-operation instruction may be performed by different internal processors, and data (such as intermediate results) from one internal processor may be transferred to another internal processor of the memory, enabling parallel execution of an instruction(s).
Abstract:
A memory device includes a memory component that stores data and a processor. The processor may receive requests from a requesting component to perform a plurality of data operations, generate a plurality of packets associated with the plurality of data operations, and continuously transmit each of the plurality of packets until each of the plurality of packets are transmitted. Each of the plurality of packets after the first packet of the plurality of packets is transmitted on a subsequent clock cycle immediately after a previous packet is transmitted.
Abstract:
Apparatuses and methods for adaptive control of memory are disclosed. One example apparatus includes a memory translation unit configured to receive a memory access request including a requested address and to determine a mapping state of a region of a memory associated with the requested address. The memory translation unit further configured to provide a mapped address to the memory. The mapped address is selected from one of the requested address or a translated requested address based on the state of the region of the memory associated with the requested address.
Abstract:
A memory device includes a memory component that stores data. The memory device also includes a processor that receives a signal indicating that the memory component is coupled to the processor and retrieves information from the memory component. The information may include one or more algorithms capable of being performed by the memory component. The processor may then receive one or more packets associated with one or more data operations regarding the memory component. The processor may then perform the one or more data operations by using the memory component to employ the one or more algorithms.
Abstract:
Devices and methods may be used to append a scalable (1) of parity bits in a data packet that scales with a number of data bits in a payload of the data packet. The parity bits may be generated utilizing a table of entries. In some examples, each entry in the table corresponds to a number of the data bits to be included in the payload; and each column of the table may be used to generate a corresponding parity bit of the one or more parity bits.
Abstract:
A memory device may include a memory component that stores data and a processor. The processor may map one or more banks or one or more virtual banks in the memory component based on one or more properties associated with the memory component and an expected random access rate for the memory component.
Abstract:
Memory having internal processors, and methods of data communication within such a memory are provided. In one embodiment, an internal processor may concurrently access one or more banks on a memory array on a memory device via one or more buffers. The internal processor may be coupled to a buffer capable of accessing more than one bank, or coupled to more than one buffer that may each access a bank, such that data may be retrieved from and stored in different banks concurrently. Further, the memory device may be configured for communication between one or more internal processors through couplings between memory components, such as buffers coupled to each of the internal processors. Therefore, a multi-operation instruction may be performed by different internal processors, and data (such as intermediate results) from one internal processor may be transferred to another internal processor of the memory, enabling parallel execution of an instruction(s).