摘要:
An electron beam apparatus such as a sheet beam based testing apparatus has an electron-optical system for irradiating an object under testing with a primary electron beam from an electron beam source, and projecting an image of a secondary electron beam emitted by the irradiation of the primary electron beam, and a detector for detecting the secondary electron beam image projected by the electron-optical system. Specifically, the electron beam apparatus comprises beam generating means 2004 for irradiating an electron beam having a particular width, a primary electron-optical system 2001 for leading the beam to reach the surface of a substrate 2006 under testing, a secondary electron-optical system 2002 for trapping secondary electrons generated from the substrate 2006 and introducing them into an image processing system 2015, a stage 2003 for transportably holding the substrate 2006 with a continuous degree of freedom equal to at least one, a testing chamber for the substrate 2006, a substrate transport mechanism for transporting the substrate 2006 into and out of the testing chamber, an image processing analyzer 2015 for detecting defects on the substrate 2006, a vibration isolating mechanism for the testing chamber, a vacuum system for holding the testing chamber at a vacuum, and a control system 2017 for displaying or storing positions of defects on the substrate 2006.
摘要:
An electron beam apparatus is provided for evaluating a sample at a high throughput and a high S/N ratio. As an electron beam emitted from an electron gun is irradiated to a sample placed on an X-Y-θ stage through an electrostatic lens, an objective lens and the like, secondary electrons or reflected electrons are emitted from the sample. The primary electron beam is incident at an incident angle set at approximately 35° or more by controlling a deflector. Electrons emitted from the sample is guided in the vertical direction, and focused on a detector. The detector is made up of an MCP, a fluorescent plate, a relay lens, and a TDI (or CCD). An electric signal from the TDI is supplied to a personal computer for image processing to generate a two-dimensional image of the sample.
摘要:
Secondary electrons emitted from a sample (W) by an electron beam irradiation is deflected by a beam separator (77), and is deflected again in a perpendicular direction by an aberration correction electrostatic deflector (711) to form a magnified image on the principal plane of an auxiliary lens (712). The secondary electron beam diverged from the auxiliary lens (712) passes through axial chromatic aberration correction lenses (714-717) and images on a principal plane of an auxiliary lens (718) for a magnifying lens (719). The magnified image is formed in a position spaced apart from the optical axis. Therefore, when the secondary electron beam diverged from the auxiliary lens (712) is incident on the axial chromatic aberration correction lenses without any change, large abaxial aberration occurs. To avoid it, the auxiliary lens (712) is used to form the image of an NA aperture (724) in substantially a middle (723) in the light axis direction of the axial chromatic aberration correction lenses (714-717).
摘要:
Provided is a sample observing method allowing for a detailed observation of a sample by using one and the same electron beam apparatus. The method uses an electron beam apparatus 1 comprising a primary optical system 10 serving for irradiating the electron beam onto the sample surface and a secondary optical system 30 serving for detecting secondary electrons emanating from said sample surface to form an image of the sample surface. The inspection is carried out on the sample surface, S, by irradiating the electron beam to the sample surface, and after the extraction of a defective region in the sample based on the inspection, the extracted defective region is once again applied with the irradiation of the electron beam so as to provide a magnification or a detailed observation of the defective region.
摘要:
Provided is a sample observing method allowing for a detailed observation of a sample by using one and the same electron beam apparatus. The method uses an electron beam apparatus 1 comprising a primary optical system 10 serving for irradiating the electron beam onto the sample surface and a secondary optical system 30 serving for detecting secondary electrons emanating from said sample surface to form an image of the sample surface. The inspection is carried out on the sample surface, S, by irradiating the electron beam to the sample surface, and after the extraction of a defective region in the sample based on the inspection, the extracted defective region is once again applied with the irradiation of the electron beam so as to provide a magnification or a detailed observation of the defective region.
摘要:
Provided is a sample observing method allowing for a detailed observation of a sample by using one and the same electron beam apparatus. The method uses an electron beam apparatus 1 comprising a primary optical system 10 serving for irradiating the electron beam onto the sample surface and a secondary optical system 30 serving for detecting secondary electrons emanating from said sample surface to form an image of the sample surface. The inspection is carried out on the sample surface, S, by irradiating the electron beam to the sample surface, and after the extraction of a defective region in the sample based on the inspection, the extracted defective region is once again applied with the irradiation of the electron beam so as to provide a magnification or a detailed observation of the defective region.
摘要:
Provided is a sample observing method allowing for a detailed observation of a sample by using one and the same electron beam apparatus. The method uses an electron beam apparatus 1 comprising a primary optical system 10 serving for irradiating the electron beam onto the sample surface and a secondary optical system 30 serving for detecting secondary electrons emanating from said sample surface to form an image of the sample surface. The inspection is carried out on the sample surface, S, by irradiating the electron beam to the sample surface, and after the extraction of a defective region in the sample based on the inspection, the extracted defective region is once again applied with the irradiation of the electron beam so as to provide a magnification or a detailed observation of the defective region.
摘要:
An object of the present invention is to provide an electron beam apparatus, in which a plurality of electron beams, e.g., four electron beams, is produced for one optical axis with a relatively high current achieved for each electron beam.Provided is an electron beam apparatus comprising: an electron beam emitter (32) having an electron gun (30), said electron gun (30) disposed along an optical axis (23) and operable to emit a plurality of off-axis electron beams along a direction defined by a certain angle with respect to the optical axis (23); a plurality of apertures (34) disposed at a location offset from the optical axis (23); and an electromagnetic lens (7) for forming a magnetic field between the electron gun (30) and the apertures (34) to control the plurality of off-axis electron beams emitted from the electron gun (30) so that the plurality of off-axis electron beams passes through the apertures (34).
摘要:
An object of the present invention is to provide an electron beam apparatus, in which a plurality of electron beams, e.g., four electron beams, is produced for one optical axis with a relatively high current achieved for each electron beam. Provided is an electron beam apparatus comprising: an electron beam emitter (32) having an electron gun (30), said electron gun (30) disposed along an optical axis (23) and operable to emit a plurality of off-axis electron beams along a direction defined by a certain angle with respect to the optical axis (23); a plurality of apertures (34) disposed at a location offset from the optical axis (23); and an electromagnetic lens (7) for forming a magnetic field between the electron gun (30) and the apertures (34) to control the plurality of off-axis electron beams emitted from the electron gun (30) so that the plurality of off-axis electron beams passes through the apertures (34).
摘要:
An object of the present invention is to provide an electron beam apparatus, in which a plurality of electron beams, e.g., four electron beams, is produced for one optical axis with a relatively high current achieved for each electron beam.Provided is an electron beam apparatus comprising: an electron beam emitter (32) having an electron gun (30), said electron gun (30) disposed along an optical axis (23) and operable to emit a plurality of off-axis electron beams along a direction defined by a certain angle with respect to the optical axis (23); a plurality of apertures (34) disposed at a location offset from the optical axis (23); and an electromagnetic lens (7) for forming a magnetic field between the electron gun (30) and the apertures (34) to control the plurality of off-axis electron beams emitted from the electron gun (30) so that the plurality of off-axis electron beams passes through the apertures (34).