Abstract:
A method of fabricating a memory array. The method begins with a structure, generally composed of dielectric fill material and having conductive lines formed at its lower portion, and a sacrificial layer formed on its upper surface. Diodes are formed in the fill material, each diode having a lightly-doped first layer of the same conductivity type as the conductive lines; a heavily doped second layer of opposite conductivity type; and a conductive cap. Self-aligned vias are formed over the diodes. Self-aligned, and self-centered spacers in the self-aligned vias define pores that expose the conductive cap. Memory material is deposited within the pores, the memory material making contact with the conductive cap. A top electrode is formed in contact with the memory material.
Abstract:
Embodiments of the present invention provide a device comprising a plurality of phase change memory cells, a word line, and a plurality of bit lines. Each phase change memory cell is coupled to a corresponding transistor. Each transistor is coupled to the word line. Each bit line is coupled to a phase change memory cell of the device. The device further comprises a programming circuit configured to program at least one phase change memory cell to the SET state by selectively applying a two-stage waveform to the word line and the bit lines of the device. In a first stage, a first predetermined low voltage and a first predetermined high voltage are applied at the word line and the bit lines, respectively. In a second stage, a second predetermined high voltage and a predetermined voltage with decreasing amplitude are applied at the word line and the bit lines, respectively.
Abstract:
A resistive non-volatile memory cell with a bipolar junction transistor (BJT) access device formed in conjunction with the entire memory cell. The memory cell includes a substrate acting as a collector, a semiconductor base layer acting as a base, and a semiconductor emitter layer acting as an emitter. Additionally, metal plugs and the phase change memory element are formed above the BJT access device while the emitter, metal plugs, and phase change memory element are contained within an insulating region. In one embodiment of the invention, a spacer layer is formed and the emitter layer is contained within the protective spacer layer. The spacer layer is contained within the insulating region.
Abstract:
According to a technique, an electronic device is configured to correspond to characteristic features of a biological synapse. The electronic device includes multiple bipolar resistors arranged in parallel to form an electronic synapse, an axonal connection connected to one end of the electronic synapse and to a first electronic neuron, and a dendritic connection connected to another end of the electronic synapse and to a second electronic neuron. An increase and decrease of synaptic conduction in the electronic synapse is based on a probability of switching the plurality of bipolar resistors between a low resistance state and a high resistance state.
Abstract:
According to a technique, an electronic device is configured to correspond to characteristic features of a biological synapse. The electronic device includes multiple bipolar resistors arranged in parallel to form an electronic synapse, an axonal connection connected to one end of the electronic synapse and to a first electronic neuron, and a dendritic connection connected to another end of the electronic synapse and to a second electronic neuron. An increase and decrease of synaptic conduction in the electronic synapse is based on a probability of switching the plurality of bipolar resistors between a low resistance state and a high resistance state.
Abstract:
Memory devices are described along with methods for manufacturing. A memory device as described herein comprises a plurality of word lines overlying a plurality of bit lines, and a plurality of field effect transistors. Field effect transistors in the plurality of field effect transistors comprises a first terminal electrically coupled to a corresponding bit line in the plurality of bit lines, a second terminal overlying the first terminal, and a channel region separating the first and second terminals and adjacent a corresponding word line in the plurality of word lines. The corresponding word line acts as the gate of the field effect transistor. A dielectric separates the corresponding word line from the channel region. A memory plane comprises programmable resistance memory material electrically coupled to respective second terminals of the field effect transistors, and conductive material on the programmable resistance memory material and coupled to a common voltage.
Abstract:
A resistive non-volatile memory cell with a bipolar junction transistor (BJT) access device formed in conjunction with the entire memory cell. The memory cell includes a substrate acting as a collector, a semiconductor base layer acting as a base, and a semiconductor emitter layer acting as an emitter. Additionally, metal plugs and the phase change memory element are formed above the BJT access device while the emitter, metal plugs, and phase change memory element are contained within an insulating region. In one embodiment of the invention, a spacer layer is formed and the emitter layer is contained within the protective spacer layer. The spacer layer is contained within the insulating region.
Abstract:
Memory devices and methods for manufacturing are described herein. A memory device described herein includes a plurality of memory cells. Memory cells in the plurality of memory cells comprise respective bipolar junction transistors and memory elements. The bipolar junction transistors are arranged in a common collector configuration and include an emitter comprising doped polysilicon having a first conductivity type, the emitter contacting a corresponding word line in a plurality of word lines to define a pn junction. The bipolar junction transistors include a portion of the corresponding word line underlying the emitter acting as a base, and a collector comprising a portion of the single-crystalline substrate underlying the base.
Abstract:
An example embodiment disclosed is a phase change memory cell. The memory cell includes a phase change material and a transducer positioned proximate the phase change material. The phase change material is switchable between at least an amorphous state and a crystalline state. The transducer is configured to activate when the phase change material is changed from the amorphous state to the crystalline state. In a particular embodiment, the transducer is ferroelectric material.
Abstract:
Memory devices and methods for manufacturing are described herein. A memory device described herein includes a plurality of memory cells. Memory cells in the plurality of memory cells comprise respective bipolar junction transistors and memory elements. The bipolar junction transistors are arranged in a common collector configuration and include an emitter comprising doped polysilicon having a first conductivity type, the emitter contacting a corresponding word line in a plurality of word lines to define a pn junction. The bipolar junction transistors include a portion of the corresponding word line underlying the emitter acting as a base, and a collector comprising a portion of the single-crystalline substrate underlying the base.