摘要:
Among the many embodiment, in one embodiment, a method for processing a substrate is disclosed which includes generating a fluid layer on a surface of the substrate, the fluid layer defining a fluid meniscus. The generating includes moving a head in proximity to the surface, applying a fluid from the head to the surface while the head is in proximity to the surface of the substrate to define the fluid layer, and removing the fluid from the surface through the proximity head by a vacuum. The fluid travels along the fluid layer between the head and the substrate at a velocity that increases as the head is in closer proximity to the surface.
摘要:
A method for cleaning a substrate is provided. The method initiates with applying an activation solution to a surface of the substrate. The activation solution and the surface of the substrate are contacted with a surface of a solid cleaning surface. The activation solution is absorbed into a portion of the solid cleaning element and then the substrate or the solid cleaning surface is moved relative to each other to clean the surface of the substrate. A method for cleaning the surface of the substrate with a solid cleaning element that experiences plastic deformation is also provided. Corresponding cleaning apparatuses are also provided.
摘要:
A system and method for processing a wafer includes applying a process to the wafer. The process being supported by a surface tension gradient device. A result of the process is monitored. The monitored result is output.
摘要:
An apparatus and a method is provided for decoupling a cavitation in a liquid from an acoustic energy used to induce the cavitation. Broadly speaking, a pressure adjustment is used to control an acoustically induced cavitation in a liquid contained within a wafer cleaning apparatus, wherein the cavitation is defined by an amount and a size of gas bubbles. An increase in a pressure within the wafer cleaning apparatus results in a suppression of the cavitation. Conversely, a decrease in the pressure within the wafer cleaning apparatus results in an enhancement of the cavitation. Thus, independent control of the cavitation is provided without regard to the acoustic energy or a chemistry of the liquid. Controlling the cavitation allows for a safe and efficient wafer cleaning operation that can be customized to address specific requirements dictated by a particular wafer configuration.
摘要:
A system for cleaning a semiconductor substrate is provided. The system includes transducers for generating acoustic energy oriented in a substantially perpendicular direction to a surface of a semiconductor substrate and an acoustic energy oriented in a substantially parallel direction to the surface of the semiconductor substrate. Each orientation of the acoustic energy may be simultaneously or alternately generated.
摘要:
Methods and apparatus for cleaning wafer surfaces are provided, especially for cleaning surfaces of patterned wafers. The cleaning apparatus includes a cleaning head with channels on the surface facing the patterned wafers which has a predominant pattern. Cleaning material flowing the channels exerts a shear force on the surface of a patterned wafer, which is oriented in a specific direction to the cleaning head. The shear force and the specific orientation between the patterned wafer and the cleaning head improve the removal efficiency of the surface contaminants.
摘要:
A method for post-etch cleaning of a substrate with MRAM structures and MJT structures and materials is disclosed. The method includes inserting the substrate into a first brush box configured for double-sided mechanical cleaning of the substrate. A non-HF, copper compatible chemistry is introduced into the first brush box for cleaning the active and backside surfaces of the substrate. The substrate is then inserted into a second brush box which is also configured to provide double-sided mechanical cleaning of the active and backside surfaces of the substrate. A burst of chemistry is introduced into the second brush box followed by a DIW rinse. The substrate is then processed through an SRD apparatus for final rinse and dry.
摘要:
A megasonic module for substrate processing is provided. Embodiments of the present invention include a tank configured to hold processing fluids in which the substrate is submerged, and a lid configured to mate with and seal the tank. At least two megasonic transducers are positioned within the megasonic module to direct megasonic energy to each of an active surface and a backside surface of the substrate. A pair of drive wheels are configured to receive an edge of the substrate to support and rotate the substrate in a horizontal orientation between the at least two megasonic transducers. The substrate is supported against the pair of drive wheels by a substrate stabilizing arm/wheel which also allows the rotation of the substrate. A drive motor is configured to rotate the pair of drive wheels, and a fluid recirculation system provides for temperature control and use of a plurality of processing fluids.
摘要:
A system and method of reducing defects in chemical mechanical planarization of polysilicon is disclosed. The system includes first and second polishing stations each having a different hardness polishing pad and a different slurry. A cleaning station using a dilute SC1 chemistry is also included. The process includes polishing a polysilicon wafer on a first polishing station using a hard polishing pad and then polishing the polysilicon wafer on a second polishing station having a soft pad. The polysilicon wafer may then be directly placed in a scrubber using a dilute SC1 chemistry.
摘要:
A cleaning method and apparatus using very dilute hydrofluoric acid (HF) for cleaning silicon wafers and semiconductor substrates. The HF is delivered to the core of a brush where the solution is absorbed by the brush and then applied by the brush onto the substrate. This delivery system applies the chemical solutions uniformly to the semiconductor substrate and reduces the volumes of chemical solutions used in a scrubbing process. The process of the present invention uses very dilute HF and allows a thin oxide to be etched but not completely removed so as to maintain a hydrophilic surface state. Thus, this invention presents a chemical mechanical cleaning process with in-situ etching with the use of PVA brushes on a brush scrubber. Very accurate control of etch rate is obtained and, therefore, makes this process suitable to multiple cleaning applications of silicon wafers and semiconductor substrates.