Abstract:
A method of forming a dielectric layer suitable for use as the gate dielectric layer of a metal-oxide-semiconductor field effect transistor (MOSFET) includes oxidizing the surface of a silicon substrate, forming a metal layer over the oxidized surface, and reacting the metal with the oxidized surface to form a substantially intrinsic layer of silicon superjacent the substrate, wherein at least a portion of the silicon layer may be an epitaxial silicon layer, and a metal oxide layer superjacent the silicon layer. In a further aspect of the present invention, an integrated circuit includes a plurality of MOSFETs, wherein various ones of the plurality of transistors have metal oxide gate dielectric layers and substantially intrinsic silicon layers subjacent the metal oxide dielectric layers.
Abstract:
A method including to a resonator coupled to at least one support structure on a substrate, the resonator having a resonating frequency in response to a frequency stimulus, modifying the resonating frequency by modifying the at least one support structure. A method including forming a resonator coupled to at least one support structure on a chip-level substrate, the resonator having a resonating frequency; and modifying the resonating frequency of the resonator by modifying the at least one support structure. A method including applying a frequency stimulus to a resonator coupled to at least one support structure on a chip-level substrate determining a resonating frequency; and modifying the resonating frequency of the resonator by modifying the at least one support structure. An apparatus including a resonator coupled to at least one support structure on a chip-level substrate, the resonator having a resonating frequency tuned by the modification of the at least one support structure to a selected frequency stimulus.
Abstract:
A tunable inductor is disclosed. The tunable inductor comprises a helical or spiral inductor formed on a semiconductor substrate having an input and an output. The helical inductor has a full length that provides a full inductance. Also, a full inductance switch is disposed between the output and the full length of the helical inductor. Finally, at least one microelectromechanical (MEMS) switch is disposed between the output and an intermediate location of the helical inductor.
Abstract:
The invention relates to a hollow microbeam that is fabricated upon a base or pedestal. Processing of the hollow microbeam includes forming at least one hollow channel in the microbeam by removing temporary fillers after formation of the microbeam. The inventive microbeam may provide at least an order of magnitude increase in oscillational frequency over a solid microbeam.
Abstract:
The invention relates to a hollow microbeam that is fabricated upon a base or pedestal. Processing of the hollow microbeam includes forming at least one hollow channel in the microbeam by removing temporary fillers after formation of the microbeam. The inventive microbeam may provide at least an order of magnitude increase in oscillational frequency over a solid microbeam.
Abstract:
The invention relates to a variable capacitor and method of making it. The variable capacitor comprises a fixed charge plate disposed in a substrate, a movable charge plate disposed above the fixed charge plate, and a stiffener affixed to the movable charge plate. The movable charge plate may be patterned to form a movable actuator plate where the fixed charge plate is elevated above a fixed actuator plate.
Abstract:
A method of forming a contact is disclosed. A substrate having a desired electrical contact location is provided. The substrate has a conductive layer. A first mask with an edge over the desired electrical contact location is formed on the substrate. A contact material is deposited over the first mask and the substrate. A first portion of the contact material is then removed such that a second portion of the contact material remains to form a contact adjacent to the edge of the mask, over the desired electrical contact location.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may autonomously initiate a handover procedure and select a target base station for the handover procedure. The UE may measure a signal from the source base station or the target base station, or both, and the UE may determine whether specific criteria at both base stations are within a pre-configured range. If the criteria at both base stations are within the pre-configured range, the UE may identify the target base station as a potential candidate for a handover. Accordingly, when the UE determines that radio conditions with the source base station are deteriorating (or fall below a threshold), the UE may initiate a handover to the target base station autonomously and without specific direction from the source base station.
Abstract:
A variable-speed direct current motor comprising a stator (22), a rotor (23) arranged within the stator, and a motor drive device (40) arranged partly at the stator and partly at the rotor, wherein the stator comprises a yoke (25) defining a cylindrical cavity (31), and a plurality of permanent magnets (24) arranged at the yoke, wherein the rotor comprises a cylindrical core (26) and a conductor structure (47) arranged at the core, wherein the motor drive device comprises an alternating current transformer (41) having a primary winding (42) arranged at the stator and a secondary winding (43) arranged at the rotor, a rectifier device (44) arranged at the rotor and connected with the secondary winding, a direct current supply device (45) arranged at the rotor (23) and connected with the rectifier device (44), and with the conductor structure (47), and an operation control device (48) comprising a first unit (49) arranged at the rotor (23) and a second unit (50) arranged externally of the rotor and wirelessly communicating with the first unit.
Abstract:
The present disclosure relates to systems and methods for a two-dimensional discrete Fourier transform based codebook for elevation beamforming. A two-dimensional discrete Fourier transform based codebook is determined for elevation beamforming. The codebook supports single stream codewords and multistream codewords. The two-dimensional discrete Fourier transform based codebook is generated by stacking the columns of the matrix product of two discrete Fourier transform codebook matrices. The codebook size may be flexibly designed based on required beam resolution in azimuth and elevation. A best codebook index is selected from the generated two-dimensional discrete Fourier transform based codebook. The selected codebook index is provided in a channel state information report. The channel state information report is transmitted to a base station.