摘要:
A method including to a resonator coupled to at least one support structure on a substrate, the resonator having a resonating frequency in response to a frequency stimulus, modifying the resonating frequency by modifying the at least one support structure. A method including forming a resonator coupled to at least one support structure on a chip-level substrate, the resonator having a resonating frequency; and modifying the resonating frequency of the resonator by modifying the at least one support structure. A method including applying a frequency stimulus to a resonator coupled to at least one support structure on a chip-level substrate determining a resonating frequency; and modifying the resonating frequency of the resonator by modifying the at least one support structure. An apparatus including a resonator coupled to at least one support structure on a chip-level substrate, the resonator having a resonating frequency tuned by the modification of the at least one support structure to a selected frequency stimulus.
摘要:
A tunable inductor is disclosed. The tunable inductor comprises a helical or spiral inductor formed on a semiconductor substrate having an input and an output. The helical inductor has a full length that provides a full inductance. Also, a full inductance switch is disposed between the output and the full length of the helical inductor. Finally, at least one microelectromechanical (MEMS) switch is disposed between the output and an intermediate location of the helical inductor.
摘要:
A microelectromechanical (MEMS) resonator with a vacuum-cavity is fabricated using polysilicon-enabled release methods. A vacuum-cavity surrounding the MEMS beam is formed by removing release material that surrounds the beam and sealing the resulting cavity under vacuum by depositing a layer of nitride over the structure. The vacuum-cavity MEMS resonators have cantilever beams, bridge beams or breathing-bar beams.
摘要:
The invention relates to a microbeam oscillator. Tuning of the oscillator is carried out by addition or subtraction of material to an oscillator member in order to change the mass of the oscillator member.
摘要:
The present invention relates to a stepped micro electromechanical structure (MEMS) capacitor that is actuated by a plurality of MEMS switches. The MEMS switches may be within the stepped capacitor circuit, or they may be actuated by an independent circuit. The stepped capacitor may also be varied with intermediate steps of capacitance by providing at least one variable capacitor in the stepped MEMS capacitor structure.
摘要:
The invention relates to a microbeam oscillator. Tuning of the oscillator is carried out by addition or subtraction of material to an oscillator member in order to change the mass of the oscillator member.
摘要:
The present invention relates to a chip package that includes a semiconductor device and at least one micro electromechanical structure (MEMS) such that the semiconductor device and the MEMS form an integrated package. One embodiment of the present invention includes a semiconductor device, a first MEMS device disposed in a conveyance such as a film, and a second MEMS device disposed upon the semiconductor device through a via in the conveyance.The present invention also relates to a process of forming a chip package that includes providing a conveyance such as a tape automated bonding (TAB) structure, that may hold at least one MEMS device. The method is further carried out by disposing the conveyance over the active surface of the device in a manner that causes the at least one MEMS to communicate electrically to the active surface. Where appropriate, a sealing structure such as a solder ring may be used to protect the MEMS.
摘要:
A microelectromechanical (MEMS) resonator with a vacuum-cavity is fabricated using polysilicon-enabled release methods. A vacuum-cavity surrounding the MEMS beam is formed by removing release material that surrounds the beam and sealing the resulting cavity under vacuum by depositing a layer of nitride over the structure. The vacuum-cavity MEMS resonators have cantilever beams, bridge beams or breathing-bar beams.
摘要:
A microelectromechanical (MEMS) resonator with a vacuum-cavity is fabricated using polysilicon-enabled release methods. A vacuum-cavity surrounding the MEMS beam is formed by removing release material that surrounds the beam and sealing the resulting cavity under vacuum by depositing a layer of nitride over the structure. The vacuum-cavity MEMS resonators have cantilever beams, bridge beams or breathing-bar beams.
摘要:
The present invention relates to a chip package that includes a semiconductor device and at least one micro electromechanical structure (MEMS) such that the semiconductor device and the MEMS form an integrated package. One embodiment of the present invention includes a semiconductor device, a first MEMS device disposed in a conveyance such as a film, and a second MEMS device disposed upon the semiconductor device through a via in the conveyance. The present invention also relates to a process of forming a chip package that includes providing a conveyance such as a tape automated bonding (TAB) structure that may bold at least one MEMS device. The method is further carried out by disposing the conveyance over the active surface of the device in a manner that causes the at least one MEMS to communicate electrically to the active surface. Where appropriate, a sealing structure such as a solder ring may be used to protect the MEMS.