摘要:
The need to employ costly precision components to reduce non-linearities in the signal processing path of noise reduction circuitry such as an echo canceler and decision feedback equalizer is successfully addressed by a transversal filter which is capable of effectively tracking for non-linearities in system components that manifest themselves as added noise introduced into the signal propagation path. This non-linear tracking capability is attained by employing cascaded sets of weighting coefficient and scaling factor multiplying stages. The first set of weighting coefficients effectively modifies the contents of each of the transmitted symbol samples in the transversal filter delay line to produce respective sets of `partial sums` associated with the respective data symbols employed in the data modulation scheme. The second, cascaded set of `scaling` coefficients or factors is employed to scale selected ones of the sets of the partial sums.
摘要:
A method of bonding a cap wafer to a device wafer includes heating the device wafer and the cap wafer in the chamber, cooling the device wafer and the cap wafer in the chamber, pressurizing the chamber, introducing gas into the chamber while the chamber is pressurized to accelerate a rate of one of a group consisting of the heating and the cooling, and applying pressure to the device wafer and the cap wafer while a bond is formed between the device wafer and the cap wafer.
摘要:
A semiconductor process and apparatus provides an encapsulated shallow trench isolation region by forming a silicon nitride layer (96) to cover a shallow trench isolation region (95), depositing a protective dielectric layer (97, 98) over the silicon nitride layer (96), and polishing and densifying the protective dielectric layer (97, 98) to thereby form a densified silicon nitride encapsulation layer (99) over the shallow trench isolation region (95).
摘要:
A semiconductor process and apparatus provides an encapsulated shallow trench isolation region by forming a silicon nitride layer (96) to cover a shallow trench isolation region (95), depositing a protective dielectric layer (97, 98) over the silicon nitride layer (96), and polishing and densifying the protective dielectric layer (97, 98) to thereby form a densified silicon nitride encapsulation layer (99) over the shallow trench isolation region (95).
摘要:
A method is provided for creating a barrier layer (217) on a substrate comprising a dielectric layer (203) and a metal interconnect (211). In accordance with the method, the substrate is treated with a first plasma comprising helium, thereby forming a treated substrate. The treated substrate is then exposed to a second plasma selected from the group consisting of oxidizing plasmas and reducing plasmas. Next, a barrier layer is created on the treated substrate.
摘要:
A gas phase polymerization process comprising: (1) preparing a solution of a catalyst precursor comprising a mixture of magnesium and titanium compounds, an electron donor and a solvent; (2) adding a filler to the solution from step (1) to form a slurry; (3) spray drying the slurry from step (2) at a temperature of 100 to 140° C. to form a spray dried precursor, (4) slurring the spray dried precursor from step (3) in mineral oil, (5) partially or fully pre-activating the catalyst precursor by contacting the slurry of (4) with one or more Lewis Acids, and (6) transferring the partially or fully activated precursor from step (5) into a gas phase reactor in which an olefin polymerization reaction is in progress.
摘要:
A method for imparting stress to the channel region of a transistor is provided. In accordance with the method, a semiconductor layer (307) is provided which has a dielectric layer (305) disposed beneath it. A trench (319) is created which extends through the semiconductor layer and into the dielectric layer, and the trench is backfilled with a stressor material (320), thereby forming a trench isolation structure. A channel region (326) is defined in the semiconductor layer adjacent to the trench isolation structure.
摘要:
A strained semiconductor layer is achieved by an overlying stressed dielectric layer. The stress in the dielectric layer is increased by a radiation anneal. The radiation anneal can be either by scanning using a laser beam or a flash tool that provides the anneal to the whole dielectric layer simultaneously. The heat is intense, preferably 900-1400 degrees Celcius, but for a very short duration of less than 10 milliseconds; preferably about 1 millisecond or even shorter. The result of the radiation anneal can also be used to activate the source/drain. Thus, this type of radiation anneal can result in a larger change in stress, activation of the source/drain, and still no expansion of the source/drain.
摘要:
A method for forming a portion of a semiconductor device structure comprises providing a semiconductor-on-insulator substrate having a semiconductor active layer, an insulation layer, and a semiconductor substrate. A first isolation trench is formed within the semiconductor active layer and a stressor material is deposited on a bottom of the first trench, wherein the stressor material includes a dual-use film. A second isolation trench is formed within the semiconductor active layer, wherein the second isolation trench is absent of the stressor material on a bottom of the second trench. The presence and absence of stressor material in the first and second isolation trenches, respectively, provides differential stress: (i) on one or more of N-type or P-type devices of the semiconductor device structure, (ii) for one or more of width direction or channel direction orientations, and (iii) to customize stress benefits of one or more of a or semiconductor-on-insulator substrate.
摘要:
The present invention includes a protective sleeve assembly for cords having a longitudinal flexible sleeve for retaining the cords therein. The invention discloses various embodiments for obtaining a desired sleeve length. One such sleeve embodiment includes a pair of lengthwise fasteners affixed coterminously along its seam so that the sleeve and fasteners may be separated into a pair of sleeves. A method for protecting cords is provided as well.