Abstract:
An example device for processing video data includes a memory configured to store an omnidirectional video stream, and a processor implemented in circuitry and configured to process (e.g., encode, transmit, receive, or decode) a first frame of a set of file format samples of the omnidirectional video stream, the set of file format samples referring to a sample entry, the first frame having a first region-wise packing scheme, and process a second frame of the set of file format samples referring to the sample entry, the second frame having a second region-wise packing scheme different than the first region-wise packing scheme. In this manner, a single omnidirectional video bitstream may include an entire virtual reality (VR) video content with most-requested regions being optimized with a largest number of color samples per unit of area.
Abstract:
A device for receiving streaming data includes a broadcast or multicast middleware unit configured to receive the streaming data via a second service and a proxy unit configured to be disposed between the middleware unit and a client application, the proxy unit further configured to receive an indication of whether the streaming data is to be received via a first service or the second service, when the indication indicates that the streaming data is to be received via the first service: disable the middleware unit; and receive the streaming data via the first service, and when the indication indicates that the streaming data is to be received via the second service: activate the middleware unit to receive the streaming data via the second service, wherein the second service comprises at least one of a broadcast service or a multicast service; and receive the streaming data from the middleware unit.
Abstract:
Systems, methods, and devices of various embodiments enable the provision of providing terrestrial broadcast television services over a cellular broadcast system. In various embodiments, a processor of a network element of the cellular broadcast system may parse a terrestrial broadcast television service for one or more information elements. The processor may configure a service description of the cellular broadcast system to include the one or more information elements of the terrestrial broadcast television service. The processor may send the configured service description over the cellular broadcast system to a receiving device to enable the receiving device to receive the terrestrial broadcast television service over the cellular broadcast system.
Abstract:
A device for receiving streaming data includes a broadcast or multicast middleware unit configured to receive the streaming data via a second service and a proxy unit configured to be disposed between the middleware unit and a client application, the proxy unit further configured to receive an indication of whether the streaming data is to be received via a first service or the second service, when the indication indicates that the streaming data is to be received via the first service: disable the middleware unit; and receive the streaming data via the first service, and when the indication indicates that the streaming data is to be received via the second service: activate the middleware unit to receive the streaming data via the second service, wherein the second service comprises at least one of a broadcast service or a multicast service; and receive the streaming data from the middleware unit.
Abstract:
An example client device includes a middleware unit for receiving media data either via a broadcast service or a unicast service, depending on whether the broadcast service is available. The client device also includes a streaming client, such as a Dynamic Adaptive Streaming over HTTP (DASH) client. The DASH client sends requests to retrieve media data via the middleware unit. The middleware unit may cache media data received via the broadcast service, such that even when the broadcast service is not active, if the streaming client requests media data that was previously received via the broadcast service, the middleware unit may provide the media data to the streaming client from the cache, rather than requesting the media data from an external server device specified in the request from the streaming client.
Abstract:
In one example, a client device for receiving information for streaming of media data includes a clock, and one or more processors configured to receive a media presentation description (MPD) for media content, wherein the MPD includes data indicative of wall-clock times at which the client device can retrieve data of the media content from a source device, and wherein the data indicates a synchronization method by which the client device is to synchronize the wall-clock times with the clock, synchronize the clock with the wall-clock times using the method indicated by the MPD, and request data of the media content from the source device using the synchronized clock. A server device or source device may form and provide such an MPD to a client device.
Abstract:
An over-the-air (OTA) broadcast middleware unit is configured to receive aggregated session description data for a plurality of sessions, wherein each of the sessions transports media data related to common media content, and wherein each of the sessions is transmitted as part of an OTA broadcast, and extract at least some of the media data from the OTA broadcast based on the aggregated session description data. The OTA broadcast middleware unit may further deliver the extracted media data to a streaming client, such as a Dynamic Adaptive Streaming over HTTP (DASH) client.
Abstract:
A server device for transmitting media data includes a first unit and a second unit. The first unit comprises one or more processing units configured to send descriptive information for media data to the second unit of the server device, wherein the descriptive information indicates a segment of the media data or a byte range of the segment and an earliest time that the segment or the byte range can be delivered or a latest time that the segment or the byte range of the segment can be delivered, and send the media data to the second unit. The second unit thereby delivers the segment or the byte range of the segment according to the descriptive information (e.g., after the earliest time and/or before the latest time).
Abstract:
In one example, a device includes one or more processors configured to determine that a manifest file for media content indicates that the media content includes a first period and a second period, that the manifest file indicates that the first and second periods are continuous, and that advertisement media data is available for insertion between the first and second periods, select a first adaptation set in the first period based at least in part on characteristics signaled for the first adaptation set, retrieve media data of the first adaptation set based on the selection of the first adaptation set, retrieve the advertisement media data, and retrieve media data of a second adaptation set in the second period that the manifest file indicates is associated with the first adaptation set based on the selection of the first adaptation set and store the retrieved media data to a memory.
Abstract:
Content (e.g., multimedia streams, audio-video streams, video files, text, etc.) may be delivered to receiver devices over a broadcast channel and/or via a broadcast network via components (e.g., servers, receiver device, software applications, modules, processes, etc.) configured to communicate the content in a manner that reduces the amount of information communicated over the broadcast network, reduces the amount network bandwidth consumed by the communication, meets precise timing requirements for the individual objects that are communicated, and enables each receiver device to receive, decode, and render the content without consuming an excess amount of that receiver device's battery or processing resources.