摘要:
A method of forming shallow junction MOSFETs is achieved. A gate oxide layer is formed overlying a substrate. A first electrode layer, of polysilicon or metal, is deposited. A silicon nitride layer is deposited. The silicon nitride layer and the first electrode layer are etched through to form temporary MOSFET gates. Ions are implanted into the substrate to form lightly doped junctions. A spacer layer is deposited. The spacer layer and the gate oxide layer are anisotropically etched to form sidewall spacers. Ions are implanted into the substrate to form heavily doped junctions. The silicon nitride layer is etched away. A second electrode layer, of polysilicon or metal, is deposited overlying the substrate, the sidewall spacers, and the first polysilicon layer. The second electrode layer is polished down to the top surfaces of the sidewall spacers to complete the MOSFETs and to form permanent gates and conductive connections to the source and drain junctions. The second electrode layer is etched through to form separate conductive connections. An intermetal dielectric layer is deposited. The intermetal dielectric layer is etched through to form contact openings. A metal layer is deposited and etched through to form separate metal interconnects. A passivation layer is deposited, and the integrated circuit is completed.
摘要:
Only one photo mask defines the metal trench and via region. The mask blocks the UV light in the trench and via area forming Plasma Polymerized Methylsilane Oxide (PPMSO) in the exposed areas. Two step RIE plasma treatment using chlorine gas and oxygen gas removes the Plasma Polymerized Methylsilane (PPMS) in the trench and via regions. Conductive metal is deposited. A CMP process polishes back both excess metal along with the PPMSO, at a similar rate, to form: conducting metal lines, interconnects, and via contacts without metal dishing.
摘要:
A method for fabricating a metal-insulator-metal capacitor wherein top metal corner shaping during patterning is eliminated is described. An insulating layer is provided overlying a semiconductor substrate. A composite metal stack is formed comprising a first metal layer overlying the insulating layer, a capacitor dielectric layer overlying the first metal layer, a second metal layer overlying the capacitor dielectric layer, and a hard mask layer overlying the second metal layer. A first photoresist mask is formed overlying the hard mask layer. The composite metal stack is patterned using the first photoresist mask as an etching mask whereby the patterned first metal layer forms a bottom electrode of the capacitor. A portion of the first photoresist mask is removed by plasma ashing to form a second photoresist mask narrower than the first photoresist mask. The hard mask layer is patterned using the second photoresist mask as an etching mask. The second metal layer is patterned using the hard mask layer as an etching mask whereby the second metal layer forms a top electrode of the capacitor to complete fabrication of a metal-insulator-metal capacitor.
摘要:
A method of forming shallow junction MOSFETs is achieved. A gate oxide layer is formed overlying a substrate. A first electrode layer, of polysilicon or metal, is deposited. A silicon nitride layer is deposited. The silicon nitride layer and the first electrode layer are etched through to form temporary MOSFET gates. Ions are implanted into the substrate to form lightly doped junctions. A spacer layer is deposited. The spacer layer and the gate oxide layer are anisotropically etched to form sidewall spacers. Ions are implanted into the substrate to form heavily doped junctions. The silicon nitride layer is etched away. A second electrode layer, of polysilicon or metal, is deposited overlying the substrate, the sidewall spacers, and the first polysilicon layer. The second electrode layer is polished down to the top surfaces of the sidewall spacers to complete the MOSFETs and to form permanent gates and conductive connections to the source and drain junctions. The second electrode layer is etched through to form separate conductive connections. An intermetal dielectric layer is deposited. The intermetal dielectric layer is etched through to form contact openings. A metal layer is deposited and etched through to form separate metal interconnects. A passivation layer is deposited, and the integrated circuit is completed.
摘要:
A method for siliciding source/drain junctions is described wherein compressive stress of the underlying silicon is avoided by the insertion of a buffer layer between the silicide and the silicon. A gate electrode and associated source/drain extensions are provided in and on a semiconductor substrate. A buffer oxide layer is deposited overlying the semiconductor substrate and the gate electrode. A polysilicon layer is deposited overlying the buffer oxide layer. The polysilicon layer will form the source/drain junctions and silicon source. The source/drain junctions are silicided whereby the buffer oxide layer provides compressive stress relief during the siliciding.
摘要:
A method of fabricating a dual damascene interconnect structure in a semiconductor device, comprises the following steps. A first level via photo sensitive dielectric layer is deposited and exposed over a semiconductor structure. A first level trench photo sensitive dielectric layer is deposited and exposed over the first via photo sensitive dielectric layer. The exposed first level via photo sensitive dielectric and trench photo sensitive dielectric layers are patterned and etched to form a first level dual damascene opening. The first level dual damascene opening comprises an integral first level via and metal line openings. A first level metal layer is deposited over the first level trench photo sensitive dielectric layer, filling the first level dual damascene opening. The first level metal layer is planarized to form at least one first level dual damascene interconnect having a first level horizontal metal line and a first level vertical via stack. The above steps are repeated n-1 times to form n-1 more dual damascene interconnects over the first level dual damascene interconnect where n is the number of interconnect levels desired. A passivation layer is deposited and patterned over the nth metal dual damascene interconnect layer to form openings in the passivation layer. The n number of via photo sensitive dielectric and trench photo sensitive dielectric layers are stripped and removed beneath the passivation layer openings and between the plurality of dual damascene structures wherein the portion of the via photo sensitive dielectric underneath the horizontal metal lines of the stripped trench photo sensitive dielectric layers remains.
摘要:
This invention relates to the fabrication of integrated circuit devices and more particularly to a method for minimizing the localized mechanical stress problems that can occur when silicided polysilicon gates are used to fabricate narrow channel CMOS devices. The invention addresses the avoidance of typical stress-induced problems in polysilicon gates, such as non-uniform silicide (including bowing, thinning edges, etc.) and voids, which are becoming increasingly worse as gate lengths continue to be reduced. The key to this invention is to spread the highly detrimental mechanical stresses, in narrow silicided gates, over a larger vertical surface area. This is accomplished by using a thin/thick double polysilicon stack for the gate, whereby, the lower thin polysilicon gate layer is not silicided and the upper thick polysilicon layer is subsequently silicided. An insulating layer is used to prevent silicidation of the lower thin polysilicon gate, during silicidation of active source-drain regions. The same insulating layer is also used to avoid another cause of mechanical stress, by protecting the surface grain boundaries of the lower thin polysilicon gate layer from being stuffed with polymer during the dry etching used for spacer formation. The tall stacked gate structure allows the silicide-induced stresses to be more safely located farther away from the active devices.
摘要:
A capacitor element of a semiconductor device used for high density semiconductor circuits is formed by the steps of forming the bottom plate of the capacitor, submitting the top of the bottom plate to plasma treatment in an oxidizing medium where nitrogen and oxygen are present, depositing a dielectric layer and submitting the top of the dielectric layer to plasma treatment in an oxidizing medium where nitrogen and oxygen are present. Various materials are used for the plasma treatment in an oxidizing medium where nitrogen and oxygen are present. While the present invention uses amorphous silicon as the dielectric material, plasma treatment in an oxidizing medium where nitrogen and oxygen are present can readily applied to a number of other dielectric materials. The objective in constructing capacitors for semiconductor circuits is to reduce the thickness of the dielectric material as much as possible and use a dielectric material for the dielectric which has a high dielectric constant, this increases the value of the capacitor electrical charge which can be carried by the capacitor. The objective of the present invention is to eliminate the leakage current between the plates of a capacitor so that the capacitor can maintain a high voltage between the top and the bottom plate.
摘要:
A method for forming a stacked container capacitor for use within integrated circuits. Formed successively upon a semiconductor substrate is a first dielectric layer, a second dielectric layer and a patterned mask layer. Within an isotropic etch process, the first dielectric layer etches slower than the second dielectric layer. By means of an anisotropic etch process employing the patterned mask layer as a mask, an aperture is etched at least partially through the first dielectric layer. By means of an isotropic etch process employing the patterned mask layer as a mask, the second dielectric layer is etched to yield a ledge formed above the first dielectric layer and below the patterned masking layer. The patterned mask layer is then removed. Formed then into the anisotropically and isotropically etched aperture is a first polysilicon layer, a third dielectric layer and a second polysilicon layer. Finally, the filled isotropically etched aperture is planarized until there is exposed a flange of the first polysilicon layer formed into the ledge.
摘要:
A method for forming a residue free patterned polysilicon layer upon a high step height patterned substrate layer. First, there is provided a semiconductor substrate having formed thereon a high step height patterned substrate layer. Formed upon the high step height patterned substrate layer is a polysilicon layer, and formed upon the polysilicon layer is a patterned photoresist layer. The patterned photoresist layer exposes portions of the polysilicon layer at a lower step level of the high step height patterned substrate layer. The polysilicon layer is then patterned through the patterned photoresist layer as an etch mask employing an anisotropic first etch process to yield a patterned polysilicon layer upon the surface of the high step height patterned substrate layer and polysilicon residues at the lower step level of the high step height patterned substrate layer. The anisotropic first etch process is a Reactive Ion Etch (RIE) anisotropic first etch process which simultaneously passivates the exposed sidewall edges of the patterned polysilicon layer. Finally, the polysilicon residues formed at the lower step level of the high step height patterned substrate layer are removed through an isotropic second etch process. The isotropic second etch process is a Reactive Ion Etch (RIE) isotropic second etch process which employs hydrogen bromide (HBr) and sulfur hexafluoride (SF6) as the reactant gases.