摘要:
Described herein are improved configurations for a wireless power transfer. Described are methods and designs for implantable electronics and devices. Wireless energy transfer is utilized to eliminate cords and power cables puncturing the skin to power an implantable device. Repeater resonators are employed to improve the power transfer characteristics between the source and the device resonators.
摘要:
Described herein are improved configurations for providing a stranded printed circuit board trace comprising, a plurality of conductor layers, a plurality of individual conductor traces on each of the said conductor layers, and a plurality of vias for connecting individual conductor traces on different said conductor layers, the vias located on the outside edges of the stranded trace. The individual conductor traces of each layer may be routed from vias on one side of the stranded printed circuit board trace to vias on the other side in a substantially diagonal direction with respect to the axis of the stranded printed circuit board trace. In embodiments, the stranded printed circuit board trace configuration may be applied to a wireless power transfer system.
摘要:
Described herein are improved configurations for wireless power transfer for computer peripherals, including a source magnetic resonator, integrated into a source station and connected to a power source and power and control circuitry; a device magnetic resonator, integrated into a computer peripheral; wherein power is transferred non-radiatively from the source magnetic resonator to the device magnetic resonator, and where the quality factors of the source and device resonators, Qs and Qd, satisfy the relationship, √{square root over (QsQd)}>100.
摘要:
In embodiments of the present invention improved capabilities are described for a method and system comprising a source resonator optionally coupled to an energy source and a second resonator located a distance from the source resonator, where the source resonator and the second resonator are coupled to provide near-field wireless energy transfer among the source resonator and the second resonator and where the field of at least one of the source resonator and the second resonator is shaped using a magnetic material to avoid a loss-inducing object.
摘要:
A mobile wireless receiver for use with a first electromagnetic resonator coupled to a power supply and a second electromagnetic resonator coupled to at least one of a power supply and the first electromagnetic resonator. The mobile wireless receiver includes a load associated with a mobile device such that the load delivers electrical energy to the mobile device, and a third electromagnetic resonator configured to be coupled to the load and movable relative to at least one of the first electromagnetic resonator and the second electromagnetic resonator, wherein the third resonator is configured to be wirelessly coupled to at least one of the first electromagnetic resonator and the second electromagnetic resonator to provide resonant, non-radiative wireless power to the third electromagnetic resonator from at least one of the first electromagnetic resonator and the second electromagnetic resonator.
摘要:
Described herein are improved configurations for a wireless power converter that includes at least one receiving magnetic resonator configured to capture electrical energy received wirelessly through a first oscillating magnetic field characterized by a first plurality of parameters, and at least one transferring magnetic resonator configured to generate a second oscillating magnetic field characterized by a second plurality of parameters different from the first plurality of parameters, wherein the electrical energy from the at least one receiving magnetic resonator is used to energize the at least one transferring magnetic resonator to generate the second oscillating magnetic field.
摘要:
Described herein are improved configurations for a wireless power transfer system with at least one adjustable magnetic resonator that may include a first magnetic resonator with a plurality of differently sized inductive elements, at least one power and control circuit configured to selectively connect to at least one of the plurality of differently sized inductive elements, one or more additional magnetic resonators separated from the first magnetic resonator, and measurement circuitry to measure at least one parameter of a wireless power transfer between the first magnetic resonator and the one or more additional magnetic resonators. One or more connections between the plurality of differently sized inductive elements and the at least one power and control circuit may be configured to change an effective size of the first magnetic resonator according to the at least one parameter measured by the measurement circuitry.
摘要:
Wireless vehicle charger safety systems and methods use a detection subsystem, a notification subsystem and a management subsystem. The detection subsystem identifies a safety condition. The notification subsystem provides an indication of the safety condition. The management subsystem addresses the safety condition. In particular, undesirable thermal conditions caused by foreign objects between a source resonator and a vehicle resonator are addressed by sensing high temperatures, providing a warning and powering down a vehicle charger, as appropriate for the environment in which the charger is deployed.
摘要:
Described herein are improved configurations for a wireless power transfer system that may include a source resonator including at least one high-Q magnetic resonator configured to generate an oscillating magnetic field, the source resonator located at a distance from a vehicle having a device resonator, and a positioning system that provides information on a relative alignment of the source resonator and the device resonator.
摘要:
In embodiments of the present invention improved capabilities are described for a method and system comprising a first resonator coupled to an energy source generating a field having magnetic material, and a second resonator located a variable distance from the source resonator having magnetic material and not connected by any wire or shared magnetic material to the first resonator, where the source resonator and the second resonator are coupled to provide near-field wireless energy transfer among the source resonator and the second resonator, and where the field of at least one of the source resonator and the second resonator is shaped using magnetic materials to increase the coupling factor among the resonators.