Abstract:
Electric vehicles (EVs), power trains and control units and methods are provided. Power trains comprise a main fast-charging lithium ion battery (FC), configured to deliver power to the electric vehicle, a supercapacitor-emulating fast-charging lithium ion battery (SCeFC), configured to receive power and deliver power to the FC and/or to the EV, and a control unit. Both the FC and the SCeFC have anodes based on the same anode active material, and the SCeFC is configured to operate at high rates within a limited operation range of state of charge (SoC), maintained by the control unit, which is further configured to manage the FC and the SCeFC with respect to power delivery to and from the EV, respectively, and manage power delivery from the SCeFC to the FC according to specified criteria that minimize a depth of discharge and/or a number of cycles of the FC.
Abstract:
Methods, systems and battery modules are provided, which increase the cycling lifetime of fast charging lithium ion batteries. During the formation process, the charging currents are adjusted to optimize the cell formation, possibly according to the characteristics of the formation process itself, and discharge extents are partial and optimized as well, as is the overall structure of the formation process. During operation, voltage ranges are initially set to be narrow, and are broadened upon battery deterioration to maximize the overall lifetime. Current adjustments are applied in operation as well, with respect to the deteriorating capacity of the battery. Various formation and operation strategies are disclosed, as basis for specific optimizations.
Abstract:
Color conversion films for a LCD (liquid crystal display) having RGB (red, green, blue) color filters, as well as such displays, formulations, precursors and methods are provided, which improve display performances with respect to color gamut, energy efficiency, materials and costs. The color conversion films absorb backlight illumination and convert the energy to green and/or red emission at high efficiency, specified wavelength ranges and narrow emission peaks. For example, rhodamine-based fluorescent compounds are used in matrices produced by sol gel processes and/or UV (ultraviolet) curing processes which are configured to stabilize the compounds and extend their lifetime—to provide the required emission specifications of the color conversion films. Film integration and display configurations further enhance the display performance with color conversion films utilizing various color conversion elements.
Abstract:
Methods, stacks and electrochemical cells are provided, which improve production processes and yield flexible and durable electrode stacks. Methods comprise depositing an electrode slurry on a sacrificial film to form an electrode thereupon, wherein the electrode slurry comprises a first solvent, attaching (e.g., laminating) a current collector film, which is produced at least partly using a second solvent, onto the formed electrode, to yield a stack, wherein a binding strength of the electrode to the current collector film is higher than a binding strength of the electrode to the sacrificial film, and delaminating the sacrificial film from the electrode while maintaining the attachment of the electrode to the current collector film. Additional layers such as a cell separator and an additional electrode may be further attached using similar steps.
Abstract:
Active materials for anodes for lithium ion devices are disclosed. An active may comprise germanium nano-particles having a particle size of 20 to 100 nm, wherein the weight percentage of the germanium is between 72 to 96 weight % of the total weight of the active material; boron carbide nano-particles having a particle size of 20 to 100 nm, wherein the weight percentage of boron in the active material is between 3 to 6 weight % of the total weight of the active material; and tungsten carbide nano-particles having a particle size of 20 to 60 nm, wherein the weight percentage of tungsten in the active material is between 6 to 25 weight % of the total weight of the active material.
Abstract:
Color conversion films for a LCD (liquid crystal display) having RGB (red, green, blue) color filters, as well as such displays, formulations, precursors and methods are provided, which improve display performances with respect to color gamut, energy efficiency, materials and costs. The color conversion films absorb backlight illumination and convert the energy to green and/or red emission at high efficiency, specified wavelength ranges and narrow emission peaks. For example, rhodamine-based fluorescent compounds are used in matrices produced by sol gel processes and/or UV (ultraviolet) curing processes which are configured to stabilize the compounds and extend their lifetime—to provide the required emission specifications of the color conversion films. Film integration and display configurations further enhance the display performance with color conversion films utilizing various color conversion elements.
Abstract:
Cathodes for a fast charging lithium ion battery, processes for manufacturing thereof and corresponding batteries are provided. Cathode formulations comprise cathode material having an olivine-based structure, binder material, and monomer material selected to polymerize into a conductive polymer upon partial delithiation of the cathode material during at least a first charging cycle of a cell having a cathode made of the cathode formulation. When the cathode is used in a battery, polymerization is induced in-situ (in-cell) during first charging cycle(s) of the battery to provide a polymer matrix which is evenly dispersed throughout the cathode.
Abstract:
Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
Abstract:
The present invention discloses devices and methods for adaptive fast-charging of mobile devices. Methods include the steps of: firstly determining whether a first connected component is charged; upon firstly determining the first connected component isn't charged, secondly determining whether the first connected component is adapted for rapid charging; and upon secondly determining the first connected component is adapted for rapid charging, firstly charging the first connected component at a high charging rate via a charging device. Preferably, the charging device is selected from the group consisting of: a rapid charger and a slave battery. Preferably, the first connected component is selected from the group consisting of: a mobile device and a slave battery. Preferably, the high charging rate is selected from the group consisting of: greater than about 4 C, greater than about 5 C, greater than about 10 C, greater than about 20 C, greater than about 30 C, and greater than about 60 C.
Abstract:
The present invention discloses multi-functional electrode (MFE) devices for fast-charging of energy-storage devices. MFE devices include: a multi-functional electrode (MFE) device for fast-charging of energy-storage devices, the device including: a first MFE structure for forming a suitable electrochemical half-couple, the first MFE structure having a first fast-charging component (FCC) and a first MFE assembly; a counter-electrode structure for forming a complementary electrochemical half-couple to the first MFE structure; and an internal voltage controller (IVC) for applying a bias potential to the first MFE structure and/or the counter-electrode structure, whereby the bias potential is set in accordance with the chemical nature of the first MFE structure and the counter-electrode structure. Preferably, the IVC is configured to regulate an intra-electrode potential gradient between the first FCC and the first MFE assembly, thereby controlling a charge rate from the first FCC to the first MFE assembly.