Abstract:
A method of decoding a video includes determining coding units having a hierarchical structure being data units in which the encoded image is decoded, and sub-units for predicting the coding units, by using information that indicates division shapes of the coding units and information about prediction units of the coding units, parsed from a received bitstream of a encoded image, wherein the sub-units comprise partitions obtained by splitting at least one of a height and a width of the coding units according to at least one of a symmetric ratio and an asymmetric ratio, and reconstructing the image by performing decoding including motion compensation using the partitions for the coding units, using the encoding information parsed from the received bitstream, wherein the coding units having the hierarchical structure comprise coding units of coded depths split hierarchically according to the coded depths and independently from neighboring coding units.
Abstract:
A method and apparatus for encoding an image is provided. An image coding unit, including a region that deviates from a boundary of a current picture, is divided to obtain a coding unit having a smaller size than the size of the image coding unit, and encoding is performed only in a region that does not deviate from the boundary of the current picture. A method and apparatus for decoding an image encoded by the method and apparatus for encoding an image is also provided.
Abstract:
Disclosed is a method of encoding a video, the method including: splitting a current picture into at least one maximum coding unit; determining a coded depth to output a final encoding result according to at least one split region obtained by splitting a region of the maximum coding unit according to depths, by encoding the at least one split region, based on a depth that deepens in proportion to the number of times the region of the maximum coding unit is split; and outputting image data constituting the final encoding result according to the at least one split region, and encoding information about the coded depth and a prediction mode, according to the at least one maximum coding unit.
Abstract:
A method and apparatus for decoding a video and a method and apparatus for encoding a video are provided. The method for decoding the video includes: receiving and parsing a bitstream of an encoded video; extracting, from the bitstream, encoded image data of a current picture of the encoded video assigned to a maximum coding unit, and information about a coded depth and an encoding mode according to the maximum coding unit; and decoding the encoded image data for the maximum coding unit based on the information about the coded depth and the encoding mode for the maximum coding unit, in consideration of a raster scanning order for the maximum coding unit and a zigzag scanning order for coding units of the maximum coding unit according to depths.
Abstract:
A method and apparatus for encoding an image is provided. An image coding unit, including a region that deviates from a boundary of a current picture, is divided to obtain a coding unit having a smaller size than the size of the image coding unit, and encoding is performed only in a region that does not deviate from the boundary of the current picture. A method and apparatus for decoding an image encoded by the method and apparatus for encoding an image is also provided.
Abstract:
An image processing apparatus is disclosed. The present image processing apparatus includes an input unit to which an image is input; and a processor which extracts visual characteristics by reducing an input image and obtains a high-definition image by reflecting extracted visual characteristics on the input image. The disclosure relates to an artificial intelligence (AI) system and application thereof that simulate functions such as cognition and decision-making of a human brain using a machine learning algorithm such as deep learning.
Abstract:
Provided is an electronic device including a communication unit configured to receive data from a server, a display unit configured to display a first video obtained by photographing a plurality of objects having cameras mounted thereon, or second videos obtained by the objects, an input unit configured to receive a user input, and a controller configured to display the first video on the display unit, receive a user input for selecting at least one of the plurality of objects included in the first video, through the input unit, and control the display unit to display a second video obtained by the selected object, on a part or entirety of the display unit based on the user input.
Abstract:
A method and apparatus for decoding a video and a method and apparatus for encoding a video are provided. The method for decoding the video includes: receiving and parsing a bitstream of an encoded video; extracting, from the bitstream, encoded image data of a current picture of the encoded video assigned to a maximum coding unit, and information about a coded depth and an encoding mode according to the maximum coding unit; and decoding the encoded image data for the maximum coding unit based on the information about the coded depth and the encoding mode for the maximum coding unit, in consideration of a raster scanning order for the maximum coding unit and a zigzag scanning order for coding units of the maximum coding unit according to depths.
Abstract:
Provided is a medical image processing apparatus including: a data acquisition unit configured to respectively acquire a plurality of medical images representing an object including at least one target at a plurality of different time points; and an image processor configured to generate, based on the acquired plurality of medical images, a diagnostic image showing a degree of change that has occurred in the at least one target over the plurality of different time points.
Abstract:
A method of encoding a video is provided, the method includes: determining a filtering boundary on which deblocking filtering is to be performed based on at least one data unit from among a plurality of coding units that are hierarchically configured according to depths indicating a number of times at least one maximum coding unit is spatially spilt, and a plurality of prediction units and a plurality of transformation units respectively for prediction and transformation of the plurality of coding units, determining filtering strength at the filtering boundary based on a prediction mode of a coding unit to which pixels adjacent to the filtering belong from among the plurality of coding units, and transformation coefficient values of the pixels adjacent to the filtering boundary, and performing deblocking filtering on the filtering boundary based on the determined filtering strength.