Abstract:
Described herein is a method of removing an organic-containing material from an exposed surface of a large substrate (at least 0.25 m2). The substrate may comprise an electronic device. The exposed surface is treated with a stripping solution comprising ozone (O3) in a solvent, where the solvent comprises acetic anhydride. The stripping solvent used to form the stripping solution may comprise a mixture of acetic anhydride with a co-solvent selected from the group consisting of a carbonate containing 2-4 carbon atoms, ethylene glycol diacetate, and combinations thereof. In some instances, the stripping solution may contain only acetic anhydride and ozone, where the ozone concentration is typically about 300 ppm or greater.
Abstract translation:本文描述了从大基材的暴露表面去除含有机物的材料(至少0.25μm2以上)的方法。 衬底可以包括电子器件。 暴露的表面在溶剂中用包含臭氧(O 3 N 3)的汽提溶液处理,其中溶剂包括乙酸酐。 用于形成汽提溶液的汽提溶剂可以包括乙酸酐与选自由2-4个碳原子的碳酸酯,乙二醇二乙酸酯及其组合组成的组的共溶剂的混合物。 在一些情况下,汽提溶液可以仅含有乙酸酐和臭氧,其中臭氧浓度通常为约300ppm或更高。
Abstract:
Described herein are methods of forming a thin silicon dioxide layer having a thickness of less than eight angstroms on a semiconductor substrate to form the bottom layer of a gate dielectric. A silicon dioxide layer having a thickness of less than eight angstroms may be formed by two different methods. In one method, a sulfuric acid solution is applied to a semiconductor substrate to grow a silicon dioxide layer of less than eight angstroms. The growth of the silicon dioxide layer by the sulfuric acid solution is self-limiting. In another method, a hydrogen peroxide containing solution is applied to a semiconductor substrate for a time sufficient to grow a silicon dioxide layer having a thickness of greater than eight angstroms and then applying an etching solution to etch the silicon dioxide layer down to a thickness of less than eight angstroms.
Abstract:
Methods of preventing air-liquid interfaces on the surface of a wafer in order to prevent the formation of particle defects on a wafer are presented. The air-liquid interfaces may be prevented by covering the entire surface of the wafer with liquid at all times during a cleaning process while the surface of the wafer is hydrophobic. Methods of preventing the formation of silica agglomerates in a liquid during a pH transition from an alkaline pH to a neutral pH are also presented, including minimizing the turbulence in the liquid solution and reducing the temperature of the liquid solution during the transition.
Abstract:
An apparatus for wet processing individual wafers comprising; a means for holding the wafer; a means for providing acoustic energy to a non-device side of the wafer; and a means for flowing a fluid onto a device side of the wafer.
Abstract:
Embodiments of the current invention describe ammonia hydroxide treatments for surfaces. In one embodiment, a method and a cleaning solution including ammonium hydroxide (NH4OH), water (H2O), a chelating agent, and a surfactant for cleaning silicon germanium substrates are described. The cleaning solution does not include hydrogen peroxide (H2O2) because hydrogen peroxide etches germanium. In another embodiment, a method of terminating oxidized surfaces on semiconductor substrates with terminating groups that promote the bonding of the oxidized surface to another surface with a surface treatment containing ammonium hydroxide (NH4OH) is described. The oxidized surface is immediately bonded to a second substrate after evaporation of the surface treatment.
Abstract:
A method of a single wafer wet/dry cleaning apparatus comprising: a transfer chamber having a wafer handler contained therein; a first single wafer wet cleaning chamber directly coupled to the transfer chamber; and a first single wafer ashing chamber directly coupled to the transfer chamber.
Abstract:
An apparatus for wet processing individual wafers comprising; a means for holding the wafer; a means for providing acoustic energy to a non-device side of the wafer; and a means for flowing a fluid onto a device side of the wafer.
Abstract:
An apparatus for wet processing individual wafers comprising; a means for holding the wafer; a means for providing acoustic energy to a non-device side of the wafer; and a means for flowing a fluid onto a device side of the wafer.
Abstract:
According to one aspect of the present invention, a method and apparatus for cleaning a semiconductor substrate are provided. The apparatus may include a chamber wall defining a processing chamber having a chamber gas therein, a semiconductor substrate support, and a fluid nozzle within the processing chamber having first and second pieces. The first piece may have a tip with a tip opening, and the second piece may have inlet and outlet openings and a fluid passageway therethrough interconnecting the inlet and outlet openings. A space may be defined in the fluid nozzle such that when a semiconductor substrate processing fluid is directed into the fluid passageway a relative low pressure region being formed within the fluid passageway to draw the chamber gas into the fluid passageway through the space between in the fluid nozzle, mix with semiconductor substrate processing fluid, and flow onto the semiconductor substrate.
Abstract:
Described herein are methods of forming a thin silicon dioxide layer having a thickness of less than eight angstroms on a semiconductor substrate to form the bottom layer of a gate dielectric. A silicon dioxide layer having a thickness of less than eight angstroms may be formed by two different methods. In one method, a sulfuric acid solution is applied to a semiconductor substrate to grow a silicon dioxide layer of less than eight angstroms. The growth of the silicon dioxide layer by the sulfuric acid solution is self-limiting. In another method, a hydrogen peroxide containing solution is applied to a semiconductor substrate for a time sufficient to grow a silicon dioxide layer having a thickness of greater than eight angstroms and then applying an etching solution to etch the silicon dioxide layer down to a thickness of less than eight angstroms.