摘要:
According to one embodiment of the present invention, a method of operating an integrated circuit including a plurality of resistance changing memory cells grouped into physical memory units is provided. The method includes: Monitoring writing access numbers assigned to the physical memory units, each writing access number reflecting the number of writing accesses to the physical memory unit to which the writing access number is assigned; if the value of a writing access number assigned to a first physical memory unit exceeds a writing access threshold value, a data exchange process is carried out during which the data content stored within the first physical memory unit is exchanged with the data content of a second physical memory unit having a writing access number of a lower value.
摘要:
An integrated circuit includes a first contact, a second contact, and a U-shaped access device coupled to the first contact and the second contact. The integrated circuit includes self-aligned dielectric material isolating the first contact from the second contact.
摘要:
One embodiment of the invention relates to a method for repairing a memory array. In the method, a group of at least one memory cell is dynamically analyzed to determine whether the memory array includes at least one faulty cell that no longer properly stores data. If the group includes at least one faulty cell, at least the at least one faulty cell is associated with at least another cell. Other methods, devices, and systems are also disclosed.
摘要:
An integrated circuit includes a first electrode, a second electrode, and a memory element coupled to the first electrode and to the second electrode, the memory element includes fast-operation resistance changing material doped with dielectric material.
摘要:
A memory cell device includes a first electrode, phase-change material adjacent the first electrode, a second electrode adjacent the phase-change material, a diffusion barrier adjacent the phase-change material, and isolation material adjacent the diffusion barrier for thermally isolating the phase-change material. The diffusion barrier prevents diffusion of the phase-change material into the isolation material.
摘要:
An integrated circuit includes a contact and a first electrode coupled to the contact. The first electrode includes at least two electrode material layers. The at least two electrode material layers include different materials. The integrated circuit includes a second electrode and a resistivity changing material between the first electrode and the second electrode.
摘要:
An integrated circuit includes an array of resistance changing memory cells. The array includes a first portion. The integrated circuit includes a circuit configured to apply a set pulse having a first pulse width to a first memory cell in the first portion to set the first memory cell. The first pulse width is based on a predetermined error percentage for the first portion.
摘要:
The present invention, in one embodiment, provides a method of producing a PN junction the method including at least the steps of providing a Si-containing substrate; forming an insulating layer on the Si-containing substrate; forming a via through the insulating layer to expose at least a portion of the Si-containing substrate; forming a seed layer of the exposed portion of the Si containing substrate; forming amorphous Si on at least the seed layer; converting at least a portion of the amorphous Si to provide crystalline Si; and forming a first dopant region abutting a second dopant region in the crystalline Si.
摘要:
The integrated circuit includes a first metal line and a first diode coupled to the first metal line. The integrated circuit includes a first resistivity changing material coupled to the first diode and a second metal line coupled to the first resistivity changing material.
摘要:
The present invention, in one embodiment, provides a method of producing a PN junction the method including providing a single crystal substrate; forming an insulating layer on the single crystal substrate; forming a via through the insulating layer to provide an exposed portion of the single crystal substrate; forming amorphous Si on at least the exposed portion of the single crystal substrate; converting at least a portion of the amorphous Si into single crystal Si; and forming dopant regions in the single crystal Si. In one embodiment the diode of the present invention is integrated with a memory device.