Abstract:
Propylene polymerization processes, polymers and films formed therefrom are described herein. The propylene polymerization processes generally include contacting propylene and an amount of ethylene with a first metallocene catalyst and a second metallocene catalyst within a polymerization reaction vessel to form a propylene based polymer, wherein the amount is an amount effective to form the propylene based polymer including from about 2 wt. % to about 6 wt. % ethylene, the second metallocene catalyst is capable of incorporating a greater amount of ethylene into the propylene based polymer than the first metallocene catalyst and wherein the first metallocene catalyst is capable of forming a propylene/ethylene random copolymer exhibiting a melting temperature that is greater than that of a propylene/ethylene random copolymer formed from the second metallocene catalyst.
Abstract:
A method of producing an alkylaromatic by the alkylation of an aromatic with ethanol, such as producing ethylbenzene by an alkylation reaction of benzene, is disclosed.
Abstract:
A heat resistant film that comprises at least one layer that comprises a high crystallinity propylene polymer having a melt flow rate of from 0.5 g/10 min. to 15 g/10 min. and a xylene solubles of less than 3.5%. The propylene polymer may have a melting point above 158° C. The heat resistant film may further comprise at least a second layer, which may be a heterophasic random copolymer. The heat resistant film may be, for example, a blown film, a cast film, or an oriented film, and may be used in such articles of manufacture as construction films, retort packaging, and laminated articles.
Abstract:
The invention is directed to a metallocene catalyst system comprising an inert silica support having pores with a peak pore volume of greater than about 0.115 mL/g at a pore diameter between about 250 Angstroms and about 350 Angstroms, and an alumoxane activator, with the metallocene being bound substantially throughout the support. The activator is grafted to the support in a solvent at a reflux temperature of toluene to obtain an aluminoxane on silica, and a metallocene component is added to make a MCS having a metallocene loading of about 2 wt %. This facilitates the production of metallocene catalyst systems having increased catalytic activity than previously recognized that is at least about 20 percent higher than the catalytic activity for a metallocene loading of about 1 wt % where the activator is grafted to the support at room temperature.
Abstract:
Methods of forming ethylbenzene are described herein. In one embodiment, the method includes contacting dilute ethylene with benzene in the presence of an alkylation catalyst to form ethylbenzene, wherein such contact occurs in a liquid phase reaction zone and recovering ethylbenzene from the reaction zone.
Abstract:
A method for the oxidative coupling of hydrocarbons includes providing an oxidative catalyst inside a reactor and carrying out the oxidative coupling reaction under a set of reaction conditions. The reactor surfaces that contact the reactants and products do not provide a significant detrimental catalyzing effect. In an embodiment the reactor contains an inert lining or a portion of the reactor inner surface is treated to reduce the detrimental catalytic effects. In an embodiment the reactor contains a lining that includes an oxidative catalyst.
Abstract:
A method of preparing a polystyrene blend that includes combining a first polystyrene composition having a first melt flow index with a second polystyrene composition having a second melt flow index and forming a polystyrene blend, the second melt flow index being at least 2 dg/min higher that the first melt flow index. The polystyrene blend has an observed tensile strength value greater than 3% above the expected tensile strength value. The second polystyrene composition can include a recycled polystyrene material, which can include expanded polystyrene. An alternate method of preparing the polystyrene blend includes combining a polystyrene composition with a styrene monomer to form a reaction mixture, polymerizing the reaction mixture and obtaining a polystyrene blend, where the polystyrene containing composition has a melt flow index at least 2 dg/min higher than the melt flow index of the styrene monomer after it has been polymerized.
Abstract translation:一种制备聚苯乙烯共混物的方法,其包括将具有第一熔体流动指数的第一聚苯乙烯组合物与具有第二熔体流动指数的第二聚苯乙烯组合物组合并形成聚苯乙烯共混物,所述第二熔体流动指数至少为2dg / min 第一个熔体流动指数。 聚苯乙烯共混物的观测拉伸强度值大于预期拉伸强度值的3%以上。 第二聚苯乙烯组合物可以包括再循环的聚苯乙烯材料,其可以包括发泡聚苯乙烯。 制备聚苯乙烯共混物的替代方法包括将聚苯乙烯组合物与苯乙烯单体组合以形成反应混合物,使反应混合物聚合并获得聚苯乙烯共混物,其中含聚苯乙烯的组合物的熔体流动指数至少为2dg / min 比苯乙烯单体聚合后的熔体流动指数高。
Abstract:
A process is disclosed for making styrene and/or ethylbenzene by reacting toluene with a C1 source over a catalyst in at least one radial reactor to form a product stream comprising styrene and/or ethylbenzene.
Abstract:
A process for making ethylbenzene and/or styrene by reacting toluene with methane in one or more microreactors is disclosed. In one embodiment a method of revamping an existing styrene production facility by adding one or more microreactors capable of reacting toluene with methane to produce a product stream comprising ethylbenzene and/or styrene is disclosed.
Abstract:
A film comprising a polylactic acid and polypropylene blend having a haze of from about 10% to about 95% and a gloss 45° of from about 50 to about 125. A method of producing an oriented film comprising blending polypropylene and polylactic acid to form a polymeric blend, forming the polymeric blend into a film, and orienting the film. A method of producing an injection molded article comprising blending polypropylene and polylactic acid to form a polymeric blend, injecting the polymeric blend into a mold, and forming the article.